Is the following matrix positive definite?












1












$begingroup$


Is there an easy way to prove/disprove this?



$
(X)_{ij} =
begin{cases}
dfrac{k}{n} &quadtext{if i = j} \
dfrac{k(k-1)}{n(n-1)} &quadtext{Otherwise} \
end{cases}
$



where $X in R^{nXn}$ and $1 lt k lt n$










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Is there an easy way to prove/disprove this?



    $
    (X)_{ij} =
    begin{cases}
    dfrac{k}{n} &quadtext{if i = j} \
    dfrac{k(k-1)}{n(n-1)} &quadtext{Otherwise} \
    end{cases}
    $



    where $X in R^{nXn}$ and $1 lt k lt n$










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Is there an easy way to prove/disprove this?



      $
      (X)_{ij} =
      begin{cases}
      dfrac{k}{n} &quadtext{if i = j} \
      dfrac{k(k-1)}{n(n-1)} &quadtext{Otherwise} \
      end{cases}
      $



      where $X in R^{nXn}$ and $1 lt k lt n$










      share|cite|improve this question









      $endgroup$




      Is there an easy way to prove/disprove this?



      $
      (X)_{ij} =
      begin{cases}
      dfrac{k}{n} &quadtext{if i = j} \
      dfrac{k(k-1)}{n(n-1)} &quadtext{Otherwise} \
      end{cases}
      $



      where $X in R^{nXn}$ and $1 lt k lt n$







      linear-algebra positive-definite






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 hours ago









      avocadoavocado

      204




      204






















          2 Answers
          2






          active

          oldest

          votes


















          3












          $begingroup$

          It's positive definite because it is in the form of $aI+bee^T$, where $e=(1,1,ldots,1)^T$ and $a,b$ are some positive scalars.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks a lot, user1551.
            $endgroup$
            – avocado
            1 hour ago



















          1












          $begingroup$

          You can also do it by direct computation,



          Suppose $mathbf{x} := (x_1,dots,x_n) in mathbb{R}^n$, with $mathbf{x} neq mathbf{0} in mathbb{R}^n.$ Then the $i^{text{th}}$ component of $Xmathbf{x}$, which we write as $(Xmathbf{x})_i$ is given by begin{align}(Xmathbf{x})_i &= frac kn x_i + sum_{j neq i} frac{k(k-1)}{n(n-1)}x_j \
          &= frac kn left(x_i + frac{k-1}{n-1}sum_{j neq i} x_jright).
          end{align}

          So begin{align}mathbf{x}^T X mathbf{x} &= sum_{i=1}^n x_i (X mathbf{x})_i \
          &= frac kn sum_{i=1}^nleft( x_i^2 + frac{k-1}{n-1} sum_{j neq i}x_i x_j right) \
          &= frac kn left(sum_{i=1}^n x_i^2 + frac{k-1}{n-1}sum_{i=1}^n sum_{j neq i} x_i x_j right).
          end{align}



          In the case that $sum_{i=1}^n sum_{j neq i} x_i x_j geq 0,$ we easily get $mathbf{x}^T X mathbf{x}>0$.



          However, when $sum_{i=1}^n sum_{j neq i} x_i x_j < 0, $ we have
          begin{align}
          frac kn left(sum_{i=1}^n x_i^2 + frac{k-1}{n-1}sum_{i=1}^n sum_{j neq i} x_i x_j right) &> frac kn left(sum_{i=1}^n x_i^2 + sum_{i=1}^n sum_{j neq i} x_i x_j right)\
          &= frac kn left(sum_{i=1}^n x_i right)^2 \
          &> 0.
          end{align}

          So in either case, we have $mathbf{x}^T X mathbf{x} >0$. Hence, $X$ is positive definite.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thanks a lot, E-mu.
            $endgroup$
            – avocado
            1 hour ago













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072082%2fis-the-following-matrix-positive-definite%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          3












          $begingroup$

          It's positive definite because it is in the form of $aI+bee^T$, where $e=(1,1,ldots,1)^T$ and $a,b$ are some positive scalars.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks a lot, user1551.
            $endgroup$
            – avocado
            1 hour ago
















          3












          $begingroup$

          It's positive definite because it is in the form of $aI+bee^T$, where $e=(1,1,ldots,1)^T$ and $a,b$ are some positive scalars.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks a lot, user1551.
            $endgroup$
            – avocado
            1 hour ago














          3












          3








          3





          $begingroup$

          It's positive definite because it is in the form of $aI+bee^T$, where $e=(1,1,ldots,1)^T$ and $a,b$ are some positive scalars.






          share|cite|improve this answer









          $endgroup$



          It's positive definite because it is in the form of $aI+bee^T$, where $e=(1,1,ldots,1)^T$ and $a,b$ are some positive scalars.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 1 hour ago









          user1551user1551

          72k566126




          72k566126












          • $begingroup$
            Thanks a lot, user1551.
            $endgroup$
            – avocado
            1 hour ago


















          • $begingroup$
            Thanks a lot, user1551.
            $endgroup$
            – avocado
            1 hour ago
















          $begingroup$
          Thanks a lot, user1551.
          $endgroup$
          – avocado
          1 hour ago




          $begingroup$
          Thanks a lot, user1551.
          $endgroup$
          – avocado
          1 hour ago











          1












          $begingroup$

          You can also do it by direct computation,



          Suppose $mathbf{x} := (x_1,dots,x_n) in mathbb{R}^n$, with $mathbf{x} neq mathbf{0} in mathbb{R}^n.$ Then the $i^{text{th}}$ component of $Xmathbf{x}$, which we write as $(Xmathbf{x})_i$ is given by begin{align}(Xmathbf{x})_i &= frac kn x_i + sum_{j neq i} frac{k(k-1)}{n(n-1)}x_j \
          &= frac kn left(x_i + frac{k-1}{n-1}sum_{j neq i} x_jright).
          end{align}

          So begin{align}mathbf{x}^T X mathbf{x} &= sum_{i=1}^n x_i (X mathbf{x})_i \
          &= frac kn sum_{i=1}^nleft( x_i^2 + frac{k-1}{n-1} sum_{j neq i}x_i x_j right) \
          &= frac kn left(sum_{i=1}^n x_i^2 + frac{k-1}{n-1}sum_{i=1}^n sum_{j neq i} x_i x_j right).
          end{align}



          In the case that $sum_{i=1}^n sum_{j neq i} x_i x_j geq 0,$ we easily get $mathbf{x}^T X mathbf{x}>0$.



          However, when $sum_{i=1}^n sum_{j neq i} x_i x_j < 0, $ we have
          begin{align}
          frac kn left(sum_{i=1}^n x_i^2 + frac{k-1}{n-1}sum_{i=1}^n sum_{j neq i} x_i x_j right) &> frac kn left(sum_{i=1}^n x_i^2 + sum_{i=1}^n sum_{j neq i} x_i x_j right)\
          &= frac kn left(sum_{i=1}^n x_i right)^2 \
          &> 0.
          end{align}

          So in either case, we have $mathbf{x}^T X mathbf{x} >0$. Hence, $X$ is positive definite.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thanks a lot, E-mu.
            $endgroup$
            – avocado
            1 hour ago


















          1












          $begingroup$

          You can also do it by direct computation,



          Suppose $mathbf{x} := (x_1,dots,x_n) in mathbb{R}^n$, with $mathbf{x} neq mathbf{0} in mathbb{R}^n.$ Then the $i^{text{th}}$ component of $Xmathbf{x}$, which we write as $(Xmathbf{x})_i$ is given by begin{align}(Xmathbf{x})_i &= frac kn x_i + sum_{j neq i} frac{k(k-1)}{n(n-1)}x_j \
          &= frac kn left(x_i + frac{k-1}{n-1}sum_{j neq i} x_jright).
          end{align}

          So begin{align}mathbf{x}^T X mathbf{x} &= sum_{i=1}^n x_i (X mathbf{x})_i \
          &= frac kn sum_{i=1}^nleft( x_i^2 + frac{k-1}{n-1} sum_{j neq i}x_i x_j right) \
          &= frac kn left(sum_{i=1}^n x_i^2 + frac{k-1}{n-1}sum_{i=1}^n sum_{j neq i} x_i x_j right).
          end{align}



          In the case that $sum_{i=1}^n sum_{j neq i} x_i x_j geq 0,$ we easily get $mathbf{x}^T X mathbf{x}>0$.



          However, when $sum_{i=1}^n sum_{j neq i} x_i x_j < 0, $ we have
          begin{align}
          frac kn left(sum_{i=1}^n x_i^2 + frac{k-1}{n-1}sum_{i=1}^n sum_{j neq i} x_i x_j right) &> frac kn left(sum_{i=1}^n x_i^2 + sum_{i=1}^n sum_{j neq i} x_i x_j right)\
          &= frac kn left(sum_{i=1}^n x_i right)^2 \
          &> 0.
          end{align}

          So in either case, we have $mathbf{x}^T X mathbf{x} >0$. Hence, $X$ is positive definite.






          share|cite|improve this answer











          $endgroup$













          • $begingroup$
            Thanks a lot, E-mu.
            $endgroup$
            – avocado
            1 hour ago
















          1












          1








          1





          $begingroup$

          You can also do it by direct computation,



          Suppose $mathbf{x} := (x_1,dots,x_n) in mathbb{R}^n$, with $mathbf{x} neq mathbf{0} in mathbb{R}^n.$ Then the $i^{text{th}}$ component of $Xmathbf{x}$, which we write as $(Xmathbf{x})_i$ is given by begin{align}(Xmathbf{x})_i &= frac kn x_i + sum_{j neq i} frac{k(k-1)}{n(n-1)}x_j \
          &= frac kn left(x_i + frac{k-1}{n-1}sum_{j neq i} x_jright).
          end{align}

          So begin{align}mathbf{x}^T X mathbf{x} &= sum_{i=1}^n x_i (X mathbf{x})_i \
          &= frac kn sum_{i=1}^nleft( x_i^2 + frac{k-1}{n-1} sum_{j neq i}x_i x_j right) \
          &= frac kn left(sum_{i=1}^n x_i^2 + frac{k-1}{n-1}sum_{i=1}^n sum_{j neq i} x_i x_j right).
          end{align}



          In the case that $sum_{i=1}^n sum_{j neq i} x_i x_j geq 0,$ we easily get $mathbf{x}^T X mathbf{x}>0$.



          However, when $sum_{i=1}^n sum_{j neq i} x_i x_j < 0, $ we have
          begin{align}
          frac kn left(sum_{i=1}^n x_i^2 + frac{k-1}{n-1}sum_{i=1}^n sum_{j neq i} x_i x_j right) &> frac kn left(sum_{i=1}^n x_i^2 + sum_{i=1}^n sum_{j neq i} x_i x_j right)\
          &= frac kn left(sum_{i=1}^n x_i right)^2 \
          &> 0.
          end{align}

          So in either case, we have $mathbf{x}^T X mathbf{x} >0$. Hence, $X$ is positive definite.






          share|cite|improve this answer











          $endgroup$



          You can also do it by direct computation,



          Suppose $mathbf{x} := (x_1,dots,x_n) in mathbb{R}^n$, with $mathbf{x} neq mathbf{0} in mathbb{R}^n.$ Then the $i^{text{th}}$ component of $Xmathbf{x}$, which we write as $(Xmathbf{x})_i$ is given by begin{align}(Xmathbf{x})_i &= frac kn x_i + sum_{j neq i} frac{k(k-1)}{n(n-1)}x_j \
          &= frac kn left(x_i + frac{k-1}{n-1}sum_{j neq i} x_jright).
          end{align}

          So begin{align}mathbf{x}^T X mathbf{x} &= sum_{i=1}^n x_i (X mathbf{x})_i \
          &= frac kn sum_{i=1}^nleft( x_i^2 + frac{k-1}{n-1} sum_{j neq i}x_i x_j right) \
          &= frac kn left(sum_{i=1}^n x_i^2 + frac{k-1}{n-1}sum_{i=1}^n sum_{j neq i} x_i x_j right).
          end{align}



          In the case that $sum_{i=1}^n sum_{j neq i} x_i x_j geq 0,$ we easily get $mathbf{x}^T X mathbf{x}>0$.



          However, when $sum_{i=1}^n sum_{j neq i} x_i x_j < 0, $ we have
          begin{align}
          frac kn left(sum_{i=1}^n x_i^2 + frac{k-1}{n-1}sum_{i=1}^n sum_{j neq i} x_i x_j right) &> frac kn left(sum_{i=1}^n x_i^2 + sum_{i=1}^n sum_{j neq i} x_i x_j right)\
          &= frac kn left(sum_{i=1}^n x_i right)^2 \
          &> 0.
          end{align}

          So in either case, we have $mathbf{x}^T X mathbf{x} >0$. Hence, $X$ is positive definite.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited 1 hour ago

























          answered 1 hour ago









          E-muE-mu

          515314




          515314












          • $begingroup$
            Thanks a lot, E-mu.
            $endgroup$
            – avocado
            1 hour ago




















          • $begingroup$
            Thanks a lot, E-mu.
            $endgroup$
            – avocado
            1 hour ago


















          $begingroup$
          Thanks a lot, E-mu.
          $endgroup$
          – avocado
          1 hour ago






          $begingroup$
          Thanks a lot, E-mu.
          $endgroup$
          – avocado
          1 hour ago




















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072082%2fis-the-following-matrix-positive-definite%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          What other Star Trek series did the main TNG cast show up in?

          Berlina muro

          Berlina aerponto