Is the following matrix positive definite?
$begingroup$
Is there an easy way to prove/disprove this?
$
(X)_{ij} =
begin{cases}
dfrac{k}{n} &quadtext{if i = j} \
dfrac{k(k-1)}{n(n-1)} &quadtext{Otherwise} \
end{cases}
$
where $X in R^{nXn}$ and $1 lt k lt n$
linear-algebra positive-definite
$endgroup$
add a comment |
$begingroup$
Is there an easy way to prove/disprove this?
$
(X)_{ij} =
begin{cases}
dfrac{k}{n} &quadtext{if i = j} \
dfrac{k(k-1)}{n(n-1)} &quadtext{Otherwise} \
end{cases}
$
where $X in R^{nXn}$ and $1 lt k lt n$
linear-algebra positive-definite
$endgroup$
add a comment |
$begingroup$
Is there an easy way to prove/disprove this?
$
(X)_{ij} =
begin{cases}
dfrac{k}{n} &quadtext{if i = j} \
dfrac{k(k-1)}{n(n-1)} &quadtext{Otherwise} \
end{cases}
$
where $X in R^{nXn}$ and $1 lt k lt n$
linear-algebra positive-definite
$endgroup$
Is there an easy way to prove/disprove this?
$
(X)_{ij} =
begin{cases}
dfrac{k}{n} &quadtext{if i = j} \
dfrac{k(k-1)}{n(n-1)} &quadtext{Otherwise} \
end{cases}
$
where $X in R^{nXn}$ and $1 lt k lt n$
linear-algebra positive-definite
linear-algebra positive-definite
asked 2 hours ago
avocadoavocado
204
204
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
It's positive definite because it is in the form of $aI+bee^T$, where $e=(1,1,ldots,1)^T$ and $a,b$ are some positive scalars.
$endgroup$
$begingroup$
Thanks a lot, user1551.
$endgroup$
– avocado
1 hour ago
add a comment |
$begingroup$
You can also do it by direct computation,
Suppose $mathbf{x} := (x_1,dots,x_n) in mathbb{R}^n$, with $mathbf{x} neq mathbf{0} in mathbb{R}^n.$ Then the $i^{text{th}}$ component of $Xmathbf{x}$, which we write as $(Xmathbf{x})_i$ is given by begin{align}(Xmathbf{x})_i &= frac kn x_i + sum_{j neq i} frac{k(k-1)}{n(n-1)}x_j \
&= frac kn left(x_i + frac{k-1}{n-1}sum_{j neq i} x_jright).
end{align}
So begin{align}mathbf{x}^T X mathbf{x} &= sum_{i=1}^n x_i (X mathbf{x})_i \
&= frac kn sum_{i=1}^nleft( x_i^2 + frac{k-1}{n-1} sum_{j neq i}x_i x_j right) \
&= frac kn left(sum_{i=1}^n x_i^2 + frac{k-1}{n-1}sum_{i=1}^n sum_{j neq i} x_i x_j right).
end{align}
In the case that $sum_{i=1}^n sum_{j neq i} x_i x_j geq 0,$ we easily get $mathbf{x}^T X mathbf{x}>0$.
However, when $sum_{i=1}^n sum_{j neq i} x_i x_j < 0, $ we have
begin{align}
frac kn left(sum_{i=1}^n x_i^2 + frac{k-1}{n-1}sum_{i=1}^n sum_{j neq i} x_i x_j right) &> frac kn left(sum_{i=1}^n x_i^2 + sum_{i=1}^n sum_{j neq i} x_i x_j right)\
&= frac kn left(sum_{i=1}^n x_i right)^2 \
&> 0.
end{align}
So in either case, we have $mathbf{x}^T X mathbf{x} >0$. Hence, $X$ is positive definite.
$endgroup$
$begingroup$
Thanks a lot, E-mu.
$endgroup$
– avocado
1 hour ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072082%2fis-the-following-matrix-positive-definite%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
It's positive definite because it is in the form of $aI+bee^T$, where $e=(1,1,ldots,1)^T$ and $a,b$ are some positive scalars.
$endgroup$
$begingroup$
Thanks a lot, user1551.
$endgroup$
– avocado
1 hour ago
add a comment |
$begingroup$
It's positive definite because it is in the form of $aI+bee^T$, where $e=(1,1,ldots,1)^T$ and $a,b$ are some positive scalars.
$endgroup$
$begingroup$
Thanks a lot, user1551.
$endgroup$
– avocado
1 hour ago
add a comment |
$begingroup$
It's positive definite because it is in the form of $aI+bee^T$, where $e=(1,1,ldots,1)^T$ and $a,b$ are some positive scalars.
$endgroup$
It's positive definite because it is in the form of $aI+bee^T$, where $e=(1,1,ldots,1)^T$ and $a,b$ are some positive scalars.
answered 1 hour ago
user1551user1551
72k566126
72k566126
$begingroup$
Thanks a lot, user1551.
$endgroup$
– avocado
1 hour ago
add a comment |
$begingroup$
Thanks a lot, user1551.
$endgroup$
– avocado
1 hour ago
$begingroup$
Thanks a lot, user1551.
$endgroup$
– avocado
1 hour ago
$begingroup$
Thanks a lot, user1551.
$endgroup$
– avocado
1 hour ago
add a comment |
$begingroup$
You can also do it by direct computation,
Suppose $mathbf{x} := (x_1,dots,x_n) in mathbb{R}^n$, with $mathbf{x} neq mathbf{0} in mathbb{R}^n.$ Then the $i^{text{th}}$ component of $Xmathbf{x}$, which we write as $(Xmathbf{x})_i$ is given by begin{align}(Xmathbf{x})_i &= frac kn x_i + sum_{j neq i} frac{k(k-1)}{n(n-1)}x_j \
&= frac kn left(x_i + frac{k-1}{n-1}sum_{j neq i} x_jright).
end{align}
So begin{align}mathbf{x}^T X mathbf{x} &= sum_{i=1}^n x_i (X mathbf{x})_i \
&= frac kn sum_{i=1}^nleft( x_i^2 + frac{k-1}{n-1} sum_{j neq i}x_i x_j right) \
&= frac kn left(sum_{i=1}^n x_i^2 + frac{k-1}{n-1}sum_{i=1}^n sum_{j neq i} x_i x_j right).
end{align}
In the case that $sum_{i=1}^n sum_{j neq i} x_i x_j geq 0,$ we easily get $mathbf{x}^T X mathbf{x}>0$.
However, when $sum_{i=1}^n sum_{j neq i} x_i x_j < 0, $ we have
begin{align}
frac kn left(sum_{i=1}^n x_i^2 + frac{k-1}{n-1}sum_{i=1}^n sum_{j neq i} x_i x_j right) &> frac kn left(sum_{i=1}^n x_i^2 + sum_{i=1}^n sum_{j neq i} x_i x_j right)\
&= frac kn left(sum_{i=1}^n x_i right)^2 \
&> 0.
end{align}
So in either case, we have $mathbf{x}^T X mathbf{x} >0$. Hence, $X$ is positive definite.
$endgroup$
$begingroup$
Thanks a lot, E-mu.
$endgroup$
– avocado
1 hour ago
add a comment |
$begingroup$
You can also do it by direct computation,
Suppose $mathbf{x} := (x_1,dots,x_n) in mathbb{R}^n$, with $mathbf{x} neq mathbf{0} in mathbb{R}^n.$ Then the $i^{text{th}}$ component of $Xmathbf{x}$, which we write as $(Xmathbf{x})_i$ is given by begin{align}(Xmathbf{x})_i &= frac kn x_i + sum_{j neq i} frac{k(k-1)}{n(n-1)}x_j \
&= frac kn left(x_i + frac{k-1}{n-1}sum_{j neq i} x_jright).
end{align}
So begin{align}mathbf{x}^T X mathbf{x} &= sum_{i=1}^n x_i (X mathbf{x})_i \
&= frac kn sum_{i=1}^nleft( x_i^2 + frac{k-1}{n-1} sum_{j neq i}x_i x_j right) \
&= frac kn left(sum_{i=1}^n x_i^2 + frac{k-1}{n-1}sum_{i=1}^n sum_{j neq i} x_i x_j right).
end{align}
In the case that $sum_{i=1}^n sum_{j neq i} x_i x_j geq 0,$ we easily get $mathbf{x}^T X mathbf{x}>0$.
However, when $sum_{i=1}^n sum_{j neq i} x_i x_j < 0, $ we have
begin{align}
frac kn left(sum_{i=1}^n x_i^2 + frac{k-1}{n-1}sum_{i=1}^n sum_{j neq i} x_i x_j right) &> frac kn left(sum_{i=1}^n x_i^2 + sum_{i=1}^n sum_{j neq i} x_i x_j right)\
&= frac kn left(sum_{i=1}^n x_i right)^2 \
&> 0.
end{align}
So in either case, we have $mathbf{x}^T X mathbf{x} >0$. Hence, $X$ is positive definite.
$endgroup$
$begingroup$
Thanks a lot, E-mu.
$endgroup$
– avocado
1 hour ago
add a comment |
$begingroup$
You can also do it by direct computation,
Suppose $mathbf{x} := (x_1,dots,x_n) in mathbb{R}^n$, with $mathbf{x} neq mathbf{0} in mathbb{R}^n.$ Then the $i^{text{th}}$ component of $Xmathbf{x}$, which we write as $(Xmathbf{x})_i$ is given by begin{align}(Xmathbf{x})_i &= frac kn x_i + sum_{j neq i} frac{k(k-1)}{n(n-1)}x_j \
&= frac kn left(x_i + frac{k-1}{n-1}sum_{j neq i} x_jright).
end{align}
So begin{align}mathbf{x}^T X mathbf{x} &= sum_{i=1}^n x_i (X mathbf{x})_i \
&= frac kn sum_{i=1}^nleft( x_i^2 + frac{k-1}{n-1} sum_{j neq i}x_i x_j right) \
&= frac kn left(sum_{i=1}^n x_i^2 + frac{k-1}{n-1}sum_{i=1}^n sum_{j neq i} x_i x_j right).
end{align}
In the case that $sum_{i=1}^n sum_{j neq i} x_i x_j geq 0,$ we easily get $mathbf{x}^T X mathbf{x}>0$.
However, when $sum_{i=1}^n sum_{j neq i} x_i x_j < 0, $ we have
begin{align}
frac kn left(sum_{i=1}^n x_i^2 + frac{k-1}{n-1}sum_{i=1}^n sum_{j neq i} x_i x_j right) &> frac kn left(sum_{i=1}^n x_i^2 + sum_{i=1}^n sum_{j neq i} x_i x_j right)\
&= frac kn left(sum_{i=1}^n x_i right)^2 \
&> 0.
end{align}
So in either case, we have $mathbf{x}^T X mathbf{x} >0$. Hence, $X$ is positive definite.
$endgroup$
You can also do it by direct computation,
Suppose $mathbf{x} := (x_1,dots,x_n) in mathbb{R}^n$, with $mathbf{x} neq mathbf{0} in mathbb{R}^n.$ Then the $i^{text{th}}$ component of $Xmathbf{x}$, which we write as $(Xmathbf{x})_i$ is given by begin{align}(Xmathbf{x})_i &= frac kn x_i + sum_{j neq i} frac{k(k-1)}{n(n-1)}x_j \
&= frac kn left(x_i + frac{k-1}{n-1}sum_{j neq i} x_jright).
end{align}
So begin{align}mathbf{x}^T X mathbf{x} &= sum_{i=1}^n x_i (X mathbf{x})_i \
&= frac kn sum_{i=1}^nleft( x_i^2 + frac{k-1}{n-1} sum_{j neq i}x_i x_j right) \
&= frac kn left(sum_{i=1}^n x_i^2 + frac{k-1}{n-1}sum_{i=1}^n sum_{j neq i} x_i x_j right).
end{align}
In the case that $sum_{i=1}^n sum_{j neq i} x_i x_j geq 0,$ we easily get $mathbf{x}^T X mathbf{x}>0$.
However, when $sum_{i=1}^n sum_{j neq i} x_i x_j < 0, $ we have
begin{align}
frac kn left(sum_{i=1}^n x_i^2 + frac{k-1}{n-1}sum_{i=1}^n sum_{j neq i} x_i x_j right) &> frac kn left(sum_{i=1}^n x_i^2 + sum_{i=1}^n sum_{j neq i} x_i x_j right)\
&= frac kn left(sum_{i=1}^n x_i right)^2 \
&> 0.
end{align}
So in either case, we have $mathbf{x}^T X mathbf{x} >0$. Hence, $X$ is positive definite.
edited 1 hour ago
answered 1 hour ago
E-muE-mu
515314
515314
$begingroup$
Thanks a lot, E-mu.
$endgroup$
– avocado
1 hour ago
add a comment |
$begingroup$
Thanks a lot, E-mu.
$endgroup$
– avocado
1 hour ago
$begingroup$
Thanks a lot, E-mu.
$endgroup$
– avocado
1 hour ago
$begingroup$
Thanks a lot, E-mu.
$endgroup$
– avocado
1 hour ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3072082%2fis-the-following-matrix-positive-definite%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown