How to change foreach to omit a certain multiple












4















I hope the solution to my problem is not too complicated or tedious. I am drawing a diagram which has one nuisance in it:



enter image description here



Every time the sine curve touches the axis TiKz tries to draw a line of 0 length and therefore it produces the arrow tip at that location



How do I remove these arrow tips, while not listing out each individual line (i.e. using something like foeach x in ... or similar. So essentially remove every arrow that is a multiple of 180



enter image description here



Here is the code for drawing the diagram:



documentclass[10pt]{article}
usepackage{tikz}
usetikzlibrary{calc,patterns}
usepackage{tikz-3dplot}
usepackage[left=0.00cm, right=0.00cm]{geometry}
usepackage{physics}
usepackage{bm}
usepackage{rotating}

%Defining Diagonal Arrows:
newcommand{neswarrow}{%
begin{turn}{45}
raisebox{-1ex}{$leftrightarrow$}
end{turn}
}
newcommand{nwsearrow}{%
begin{turn}{45}
raisebox{0ex}{$updownarrow$}
end{turn}
}
begin{document}
tdplotsetmaincoords{75}{135}
begin{tikzpicture}[tdplot_main_coords,scale=0.5]
draw[red,very thick,-latex] plot[smooth,variable=x,domain=0:720,samples=360] (-{2*sin(x)},{x*(2*3/360)},{2*sin(x)});
foreach x in {45,90,...,720} { %LOOK HERE FOR FIRST SET OF ARROWS
draw[-latex,help lines,red] (0,{x*(2*3/360},0) -- (-{2*sin(x)},{x*(2*3/360)},{2*sin(x)});}
draw[very thick,red,latex-latex,densely dashed] (-2,12,2) -- (2,12,-2);
begin{scope}[canvas is xz plane at y=12,xscale=-1]
draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
node[anchor=south,transform shape,scale=1.5] at (0,3.5) {large Polariser};
draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (-90:1.5) arc (-90:-135:1.5) -- cycle;
draw[blue] (-112.5:1.3) ..controls +(-112.5:0.7) and +(180:0.7).. (0.7,-1.7) node[right] {$alpha$};
end{scope}
draw[very thick] (0,12,-3) -- (0,12,3);
draw[red,very thick,-latex] plot[smooth,variable=x,domain=720:1440,samples=360] (0,{x*(2*3/360)},{2*sin(x)});
foreach x in {720,765,...,1440} {%LOOK HERE FOR SECOND SET OF ARROWS
draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- (0,{x*(2*3/360)},{2*sin(x)});}
begin{scope}[canvas is xz plane at y=24,xscale=-1]
draw[very thick,densely dashed,latex-latex,red] (-90:2) -- (90:2);
end{scope}
begin{scope}[canvas is xz plane at y=24,xscale=-1]
draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (90:1) arc (90:30:1) -- cycle;
node[blue] at (60:1.4) {$theta$};
draw[very thick] (-150:3) -- (30:3);
node[anchor=south,transform shape,scale=1.5] at (90:3.5) {large Analyser};
end{scope}
draw[red,very thick,-latex] plot[smooth,variable=x,domain=1440:1800,samples=360] ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});
foreach x in {1440,1485,...,1800} { %LOOK HERE FOR THIRD SET OF ARROWS
draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});}
draw[-latex] (0,0,0) -- (0,32,0);
draw[-latex] (0,0,-3) -- (0,0,3);
draw[-latex] (3,0,0) -- (-3,0,0);
begin{scope}[canvas is xz plane at y=1.5,xscale=-1]
draw[red] (2,2) .. controls +(45:0.5) and +(-120:0.5).. (3,2.7);
end{scope}
node[scale=0.75,red] at (-3,4,3.7) {$bm{E}=A_{neswarrow}cosleft(2pi f t+phi_{neswarrow}right)ket{neswarrow}+0ket{nwsearrow}$};
draw (0,12,-2.7) .. controls +(0:1) and +(-135:2).. (4,12,-3) node[below,scale=0.75] {Axis of Polarisation};
begin{scope}[canvas is xz plane at y=16.5,xscale=-1]
draw[red] (0,-2) .. controls +(-90:1) and +(0:0.5).. (-2,-4.4) node[left,scale=0.75] {$bm{E}=A_{neswarrow}cos(alpha)cosleft(2pi ft+phi_{neswarrow}right)ket{updownarrow} + 0ket{leftrightarrow}$};
end{scope}
end{tikzpicture}
tdplotsetmaincoords{0}{0}
begin{tikzpicture}[remember picture,overlay]
begin{scope}[xshift=-5.8cm,yshift=4cm]
draw (1,1) circle (1.1);
draw[red,thick,latex-latex] (0.5,0.5) -- (1.5,1.5);
draw[thick] (1,0.25) -- (1,1.75);
draw[red,densely dashed,thick] (1.5,1.5) -- (1,1.5) (1,0.5) -- (0.5,0.5);
node[left,scale=0.6,red,fill=white] at (1,1.5) {$A_{neswarrow}cos(alpha)$};
draw[blue,pattern=north west lines,pattern color=blue] (1,1) -- +(45:0.25) arc (45:90:0.25) -- cycle;
draw[blue] (1,1) +(67.5:0.2) ..controls +(45:0.3) and +(180:0.1).. (1.4,1) node[right] {$alpha$};
node[below,scale=0.75] at (1,-0.1) {Polariser};
end{scope}
begin{scope}[xshift=-0.8cm,yshift=4.1cm,rotate=-60]
draw (0,0) circle (1.1);
draw[red,thick,latex-latex] (150:0.7071067812) -- (-30:0.7071067812);
draw[thick] (0,-0.75) -- (0,0.75);
draw[red,densely dashed,thick] (150:0.7071067812) -- (0,0.3535533906) (0,-0.3535533906) -- (-30:0.7071067812);
draw[blue,pattern=north west lines,pattern color=blue] (0,0) -- (150:0.25) arc (150:90:0.25) -- cycle;
draw[blue] (120:0.2) ..controls +(120:0.3) and +(-90:0.1).. (-0.3,0.6) node[above right=-0.07cm] {$theta$};
node[below,scale=0.75] at (-30:1.1) {Analyser};
end{scope}
end{tikzpicture}
end{document}


Sorry about the code being very messy, I have very bad habits when it comes to writing in LaTeX. I have annotated the 3 lines of code which produce the arrows that define the wave.



Me just thinking about the problem



I think maybe the use of a double foreach stack could work. The first one where some variable a in a list {45,225,405} and then under that something like foreach x in {A,A+45,A+90}{...} so it would look like this:



foreach a in {45,225,405} {
foreach x in {{a},{a +45},{a +90}}{
draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- (0,{x*(2*3/360)},{2*sin(x)});
}
}


For the first set of helplines.



Unfortunately this attempt does not work for me



EDIT: It does work (see answer below), but is there a more efficient or neat way of solving this problem?










share|improve this question

























  • In your double foreach put x in parentheses (0,{(x)*(2*3)/360},0) -- (0,{(x)*(2*3/360)},{2*sin(x)}). And you don't need curly brackets in {a,a+45,a+90}.

    – Kpym
    1 hour ago











  • Yes I just found that out now instead you require parenthesis, I will post a solution very soon

    – sab hoque
    1 hour ago






  • 1





    you can try pgfmathparse{equal(mod(x,180),0)} ifnumpgfmathresult=0 draw[-latex,help lines,red] (0,{x*(2*3/360},0) -- (-{2*sin(x)},{x*(2*3/360)},{2*sin(x)}); fi

    – touhami
    1 hour ago
















4















I hope the solution to my problem is not too complicated or tedious. I am drawing a diagram which has one nuisance in it:



enter image description here



Every time the sine curve touches the axis TiKz tries to draw a line of 0 length and therefore it produces the arrow tip at that location



How do I remove these arrow tips, while not listing out each individual line (i.e. using something like foeach x in ... or similar. So essentially remove every arrow that is a multiple of 180



enter image description here



Here is the code for drawing the diagram:



documentclass[10pt]{article}
usepackage{tikz}
usetikzlibrary{calc,patterns}
usepackage{tikz-3dplot}
usepackage[left=0.00cm, right=0.00cm]{geometry}
usepackage{physics}
usepackage{bm}
usepackage{rotating}

%Defining Diagonal Arrows:
newcommand{neswarrow}{%
begin{turn}{45}
raisebox{-1ex}{$leftrightarrow$}
end{turn}
}
newcommand{nwsearrow}{%
begin{turn}{45}
raisebox{0ex}{$updownarrow$}
end{turn}
}
begin{document}
tdplotsetmaincoords{75}{135}
begin{tikzpicture}[tdplot_main_coords,scale=0.5]
draw[red,very thick,-latex] plot[smooth,variable=x,domain=0:720,samples=360] (-{2*sin(x)},{x*(2*3/360)},{2*sin(x)});
foreach x in {45,90,...,720} { %LOOK HERE FOR FIRST SET OF ARROWS
draw[-latex,help lines,red] (0,{x*(2*3/360},0) -- (-{2*sin(x)},{x*(2*3/360)},{2*sin(x)});}
draw[very thick,red,latex-latex,densely dashed] (-2,12,2) -- (2,12,-2);
begin{scope}[canvas is xz plane at y=12,xscale=-1]
draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
node[anchor=south,transform shape,scale=1.5] at (0,3.5) {large Polariser};
draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (-90:1.5) arc (-90:-135:1.5) -- cycle;
draw[blue] (-112.5:1.3) ..controls +(-112.5:0.7) and +(180:0.7).. (0.7,-1.7) node[right] {$alpha$};
end{scope}
draw[very thick] (0,12,-3) -- (0,12,3);
draw[red,very thick,-latex] plot[smooth,variable=x,domain=720:1440,samples=360] (0,{x*(2*3/360)},{2*sin(x)});
foreach x in {720,765,...,1440} {%LOOK HERE FOR SECOND SET OF ARROWS
draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- (0,{x*(2*3/360)},{2*sin(x)});}
begin{scope}[canvas is xz plane at y=24,xscale=-1]
draw[very thick,densely dashed,latex-latex,red] (-90:2) -- (90:2);
end{scope}
begin{scope}[canvas is xz plane at y=24,xscale=-1]
draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (90:1) arc (90:30:1) -- cycle;
node[blue] at (60:1.4) {$theta$};
draw[very thick] (-150:3) -- (30:3);
node[anchor=south,transform shape,scale=1.5] at (90:3.5) {large Analyser};
end{scope}
draw[red,very thick,-latex] plot[smooth,variable=x,domain=1440:1800,samples=360] ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});
foreach x in {1440,1485,...,1800} { %LOOK HERE FOR THIRD SET OF ARROWS
draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});}
draw[-latex] (0,0,0) -- (0,32,0);
draw[-latex] (0,0,-3) -- (0,0,3);
draw[-latex] (3,0,0) -- (-3,0,0);
begin{scope}[canvas is xz plane at y=1.5,xscale=-1]
draw[red] (2,2) .. controls +(45:0.5) and +(-120:0.5).. (3,2.7);
end{scope}
node[scale=0.75,red] at (-3,4,3.7) {$bm{E}=A_{neswarrow}cosleft(2pi f t+phi_{neswarrow}right)ket{neswarrow}+0ket{nwsearrow}$};
draw (0,12,-2.7) .. controls +(0:1) and +(-135:2).. (4,12,-3) node[below,scale=0.75] {Axis of Polarisation};
begin{scope}[canvas is xz plane at y=16.5,xscale=-1]
draw[red] (0,-2) .. controls +(-90:1) and +(0:0.5).. (-2,-4.4) node[left,scale=0.75] {$bm{E}=A_{neswarrow}cos(alpha)cosleft(2pi ft+phi_{neswarrow}right)ket{updownarrow} + 0ket{leftrightarrow}$};
end{scope}
end{tikzpicture}
tdplotsetmaincoords{0}{0}
begin{tikzpicture}[remember picture,overlay]
begin{scope}[xshift=-5.8cm,yshift=4cm]
draw (1,1) circle (1.1);
draw[red,thick,latex-latex] (0.5,0.5) -- (1.5,1.5);
draw[thick] (1,0.25) -- (1,1.75);
draw[red,densely dashed,thick] (1.5,1.5) -- (1,1.5) (1,0.5) -- (0.5,0.5);
node[left,scale=0.6,red,fill=white] at (1,1.5) {$A_{neswarrow}cos(alpha)$};
draw[blue,pattern=north west lines,pattern color=blue] (1,1) -- +(45:0.25) arc (45:90:0.25) -- cycle;
draw[blue] (1,1) +(67.5:0.2) ..controls +(45:0.3) and +(180:0.1).. (1.4,1) node[right] {$alpha$};
node[below,scale=0.75] at (1,-0.1) {Polariser};
end{scope}
begin{scope}[xshift=-0.8cm,yshift=4.1cm,rotate=-60]
draw (0,0) circle (1.1);
draw[red,thick,latex-latex] (150:0.7071067812) -- (-30:0.7071067812);
draw[thick] (0,-0.75) -- (0,0.75);
draw[red,densely dashed,thick] (150:0.7071067812) -- (0,0.3535533906) (0,-0.3535533906) -- (-30:0.7071067812);
draw[blue,pattern=north west lines,pattern color=blue] (0,0) -- (150:0.25) arc (150:90:0.25) -- cycle;
draw[blue] (120:0.2) ..controls +(120:0.3) and +(-90:0.1).. (-0.3,0.6) node[above right=-0.07cm] {$theta$};
node[below,scale=0.75] at (-30:1.1) {Analyser};
end{scope}
end{tikzpicture}
end{document}


Sorry about the code being very messy, I have very bad habits when it comes to writing in LaTeX. I have annotated the 3 lines of code which produce the arrows that define the wave.



Me just thinking about the problem



I think maybe the use of a double foreach stack could work. The first one where some variable a in a list {45,225,405} and then under that something like foreach x in {A,A+45,A+90}{...} so it would look like this:



foreach a in {45,225,405} {
foreach x in {{a},{a +45},{a +90}}{
draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- (0,{x*(2*3/360)},{2*sin(x)});
}
}


For the first set of helplines.



Unfortunately this attempt does not work for me



EDIT: It does work (see answer below), but is there a more efficient or neat way of solving this problem?










share|improve this question

























  • In your double foreach put x in parentheses (0,{(x)*(2*3)/360},0) -- (0,{(x)*(2*3/360)},{2*sin(x)}). And you don't need curly brackets in {a,a+45,a+90}.

    – Kpym
    1 hour ago











  • Yes I just found that out now instead you require parenthesis, I will post a solution very soon

    – sab hoque
    1 hour ago






  • 1





    you can try pgfmathparse{equal(mod(x,180),0)} ifnumpgfmathresult=0 draw[-latex,help lines,red] (0,{x*(2*3/360},0) -- (-{2*sin(x)},{x*(2*3/360)},{2*sin(x)}); fi

    – touhami
    1 hour ago














4












4








4








I hope the solution to my problem is not too complicated or tedious. I am drawing a diagram which has one nuisance in it:



enter image description here



Every time the sine curve touches the axis TiKz tries to draw a line of 0 length and therefore it produces the arrow tip at that location



How do I remove these arrow tips, while not listing out each individual line (i.e. using something like foeach x in ... or similar. So essentially remove every arrow that is a multiple of 180



enter image description here



Here is the code for drawing the diagram:



documentclass[10pt]{article}
usepackage{tikz}
usetikzlibrary{calc,patterns}
usepackage{tikz-3dplot}
usepackage[left=0.00cm, right=0.00cm]{geometry}
usepackage{physics}
usepackage{bm}
usepackage{rotating}

%Defining Diagonal Arrows:
newcommand{neswarrow}{%
begin{turn}{45}
raisebox{-1ex}{$leftrightarrow$}
end{turn}
}
newcommand{nwsearrow}{%
begin{turn}{45}
raisebox{0ex}{$updownarrow$}
end{turn}
}
begin{document}
tdplotsetmaincoords{75}{135}
begin{tikzpicture}[tdplot_main_coords,scale=0.5]
draw[red,very thick,-latex] plot[smooth,variable=x,domain=0:720,samples=360] (-{2*sin(x)},{x*(2*3/360)},{2*sin(x)});
foreach x in {45,90,...,720} { %LOOK HERE FOR FIRST SET OF ARROWS
draw[-latex,help lines,red] (0,{x*(2*3/360},0) -- (-{2*sin(x)},{x*(2*3/360)},{2*sin(x)});}
draw[very thick,red,latex-latex,densely dashed] (-2,12,2) -- (2,12,-2);
begin{scope}[canvas is xz plane at y=12,xscale=-1]
draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
node[anchor=south,transform shape,scale=1.5] at (0,3.5) {large Polariser};
draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (-90:1.5) arc (-90:-135:1.5) -- cycle;
draw[blue] (-112.5:1.3) ..controls +(-112.5:0.7) and +(180:0.7).. (0.7,-1.7) node[right] {$alpha$};
end{scope}
draw[very thick] (0,12,-3) -- (0,12,3);
draw[red,very thick,-latex] plot[smooth,variable=x,domain=720:1440,samples=360] (0,{x*(2*3/360)},{2*sin(x)});
foreach x in {720,765,...,1440} {%LOOK HERE FOR SECOND SET OF ARROWS
draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- (0,{x*(2*3/360)},{2*sin(x)});}
begin{scope}[canvas is xz plane at y=24,xscale=-1]
draw[very thick,densely dashed,latex-latex,red] (-90:2) -- (90:2);
end{scope}
begin{scope}[canvas is xz plane at y=24,xscale=-1]
draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (90:1) arc (90:30:1) -- cycle;
node[blue] at (60:1.4) {$theta$};
draw[very thick] (-150:3) -- (30:3);
node[anchor=south,transform shape,scale=1.5] at (90:3.5) {large Analyser};
end{scope}
draw[red,very thick,-latex] plot[smooth,variable=x,domain=1440:1800,samples=360] ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});
foreach x in {1440,1485,...,1800} { %LOOK HERE FOR THIRD SET OF ARROWS
draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});}
draw[-latex] (0,0,0) -- (0,32,0);
draw[-latex] (0,0,-3) -- (0,0,3);
draw[-latex] (3,0,0) -- (-3,0,0);
begin{scope}[canvas is xz plane at y=1.5,xscale=-1]
draw[red] (2,2) .. controls +(45:0.5) and +(-120:0.5).. (3,2.7);
end{scope}
node[scale=0.75,red] at (-3,4,3.7) {$bm{E}=A_{neswarrow}cosleft(2pi f t+phi_{neswarrow}right)ket{neswarrow}+0ket{nwsearrow}$};
draw (0,12,-2.7) .. controls +(0:1) and +(-135:2).. (4,12,-3) node[below,scale=0.75] {Axis of Polarisation};
begin{scope}[canvas is xz plane at y=16.5,xscale=-1]
draw[red] (0,-2) .. controls +(-90:1) and +(0:0.5).. (-2,-4.4) node[left,scale=0.75] {$bm{E}=A_{neswarrow}cos(alpha)cosleft(2pi ft+phi_{neswarrow}right)ket{updownarrow} + 0ket{leftrightarrow}$};
end{scope}
end{tikzpicture}
tdplotsetmaincoords{0}{0}
begin{tikzpicture}[remember picture,overlay]
begin{scope}[xshift=-5.8cm,yshift=4cm]
draw (1,1) circle (1.1);
draw[red,thick,latex-latex] (0.5,0.5) -- (1.5,1.5);
draw[thick] (1,0.25) -- (1,1.75);
draw[red,densely dashed,thick] (1.5,1.5) -- (1,1.5) (1,0.5) -- (0.5,0.5);
node[left,scale=0.6,red,fill=white] at (1,1.5) {$A_{neswarrow}cos(alpha)$};
draw[blue,pattern=north west lines,pattern color=blue] (1,1) -- +(45:0.25) arc (45:90:0.25) -- cycle;
draw[blue] (1,1) +(67.5:0.2) ..controls +(45:0.3) and +(180:0.1).. (1.4,1) node[right] {$alpha$};
node[below,scale=0.75] at (1,-0.1) {Polariser};
end{scope}
begin{scope}[xshift=-0.8cm,yshift=4.1cm,rotate=-60]
draw (0,0) circle (1.1);
draw[red,thick,latex-latex] (150:0.7071067812) -- (-30:0.7071067812);
draw[thick] (0,-0.75) -- (0,0.75);
draw[red,densely dashed,thick] (150:0.7071067812) -- (0,0.3535533906) (0,-0.3535533906) -- (-30:0.7071067812);
draw[blue,pattern=north west lines,pattern color=blue] (0,0) -- (150:0.25) arc (150:90:0.25) -- cycle;
draw[blue] (120:0.2) ..controls +(120:0.3) and +(-90:0.1).. (-0.3,0.6) node[above right=-0.07cm] {$theta$};
node[below,scale=0.75] at (-30:1.1) {Analyser};
end{scope}
end{tikzpicture}
end{document}


Sorry about the code being very messy, I have very bad habits when it comes to writing in LaTeX. I have annotated the 3 lines of code which produce the arrows that define the wave.



Me just thinking about the problem



I think maybe the use of a double foreach stack could work. The first one where some variable a in a list {45,225,405} and then under that something like foreach x in {A,A+45,A+90}{...} so it would look like this:



foreach a in {45,225,405} {
foreach x in {{a},{a +45},{a +90}}{
draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- (0,{x*(2*3/360)},{2*sin(x)});
}
}


For the first set of helplines.



Unfortunately this attempt does not work for me



EDIT: It does work (see answer below), but is there a more efficient or neat way of solving this problem?










share|improve this question
















I hope the solution to my problem is not too complicated or tedious. I am drawing a diagram which has one nuisance in it:



enter image description here



Every time the sine curve touches the axis TiKz tries to draw a line of 0 length and therefore it produces the arrow tip at that location



How do I remove these arrow tips, while not listing out each individual line (i.e. using something like foeach x in ... or similar. So essentially remove every arrow that is a multiple of 180



enter image description here



Here is the code for drawing the diagram:



documentclass[10pt]{article}
usepackage{tikz}
usetikzlibrary{calc,patterns}
usepackage{tikz-3dplot}
usepackage[left=0.00cm, right=0.00cm]{geometry}
usepackage{physics}
usepackage{bm}
usepackage{rotating}

%Defining Diagonal Arrows:
newcommand{neswarrow}{%
begin{turn}{45}
raisebox{-1ex}{$leftrightarrow$}
end{turn}
}
newcommand{nwsearrow}{%
begin{turn}{45}
raisebox{0ex}{$updownarrow$}
end{turn}
}
begin{document}
tdplotsetmaincoords{75}{135}
begin{tikzpicture}[tdplot_main_coords,scale=0.5]
draw[red,very thick,-latex] plot[smooth,variable=x,domain=0:720,samples=360] (-{2*sin(x)},{x*(2*3/360)},{2*sin(x)});
foreach x in {45,90,...,720} { %LOOK HERE FOR FIRST SET OF ARROWS
draw[-latex,help lines,red] (0,{x*(2*3/360},0) -- (-{2*sin(x)},{x*(2*3/360)},{2*sin(x)});}
draw[very thick,red,latex-latex,densely dashed] (-2,12,2) -- (2,12,-2);
begin{scope}[canvas is xz plane at y=12,xscale=-1]
draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
node[anchor=south,transform shape,scale=1.5] at (0,3.5) {large Polariser};
draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (-90:1.5) arc (-90:-135:1.5) -- cycle;
draw[blue] (-112.5:1.3) ..controls +(-112.5:0.7) and +(180:0.7).. (0.7,-1.7) node[right] {$alpha$};
end{scope}
draw[very thick] (0,12,-3) -- (0,12,3);
draw[red,very thick,-latex] plot[smooth,variable=x,domain=720:1440,samples=360] (0,{x*(2*3/360)},{2*sin(x)});
foreach x in {720,765,...,1440} {%LOOK HERE FOR SECOND SET OF ARROWS
draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- (0,{x*(2*3/360)},{2*sin(x)});}
begin{scope}[canvas is xz plane at y=24,xscale=-1]
draw[very thick,densely dashed,latex-latex,red] (-90:2) -- (90:2);
end{scope}
begin{scope}[canvas is xz plane at y=24,xscale=-1]
draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (90:1) arc (90:30:1) -- cycle;
node[blue] at (60:1.4) {$theta$};
draw[very thick] (-150:3) -- (30:3);
node[anchor=south,transform shape,scale=1.5] at (90:3.5) {large Analyser};
end{scope}
draw[red,very thick,-latex] plot[smooth,variable=x,domain=1440:1800,samples=360] ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});
foreach x in {1440,1485,...,1800} { %LOOK HERE FOR THIRD SET OF ARROWS
draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});}
draw[-latex] (0,0,0) -- (0,32,0);
draw[-latex] (0,0,-3) -- (0,0,3);
draw[-latex] (3,0,0) -- (-3,0,0);
begin{scope}[canvas is xz plane at y=1.5,xscale=-1]
draw[red] (2,2) .. controls +(45:0.5) and +(-120:0.5).. (3,2.7);
end{scope}
node[scale=0.75,red] at (-3,4,3.7) {$bm{E}=A_{neswarrow}cosleft(2pi f t+phi_{neswarrow}right)ket{neswarrow}+0ket{nwsearrow}$};
draw (0,12,-2.7) .. controls +(0:1) and +(-135:2).. (4,12,-3) node[below,scale=0.75] {Axis of Polarisation};
begin{scope}[canvas is xz plane at y=16.5,xscale=-1]
draw[red] (0,-2) .. controls +(-90:1) and +(0:0.5).. (-2,-4.4) node[left,scale=0.75] {$bm{E}=A_{neswarrow}cos(alpha)cosleft(2pi ft+phi_{neswarrow}right)ket{updownarrow} + 0ket{leftrightarrow}$};
end{scope}
end{tikzpicture}
tdplotsetmaincoords{0}{0}
begin{tikzpicture}[remember picture,overlay]
begin{scope}[xshift=-5.8cm,yshift=4cm]
draw (1,1) circle (1.1);
draw[red,thick,latex-latex] (0.5,0.5) -- (1.5,1.5);
draw[thick] (1,0.25) -- (1,1.75);
draw[red,densely dashed,thick] (1.5,1.5) -- (1,1.5) (1,0.5) -- (0.5,0.5);
node[left,scale=0.6,red,fill=white] at (1,1.5) {$A_{neswarrow}cos(alpha)$};
draw[blue,pattern=north west lines,pattern color=blue] (1,1) -- +(45:0.25) arc (45:90:0.25) -- cycle;
draw[blue] (1,1) +(67.5:0.2) ..controls +(45:0.3) and +(180:0.1).. (1.4,1) node[right] {$alpha$};
node[below,scale=0.75] at (1,-0.1) {Polariser};
end{scope}
begin{scope}[xshift=-0.8cm,yshift=4.1cm,rotate=-60]
draw (0,0) circle (1.1);
draw[red,thick,latex-latex] (150:0.7071067812) -- (-30:0.7071067812);
draw[thick] (0,-0.75) -- (0,0.75);
draw[red,densely dashed,thick] (150:0.7071067812) -- (0,0.3535533906) (0,-0.3535533906) -- (-30:0.7071067812);
draw[blue,pattern=north west lines,pattern color=blue] (0,0) -- (150:0.25) arc (150:90:0.25) -- cycle;
draw[blue] (120:0.2) ..controls +(120:0.3) and +(-90:0.1).. (-0.3,0.6) node[above right=-0.07cm] {$theta$};
node[below,scale=0.75] at (-30:1.1) {Analyser};
end{scope}
end{tikzpicture}
end{document}


Sorry about the code being very messy, I have very bad habits when it comes to writing in LaTeX. I have annotated the 3 lines of code which produce the arrows that define the wave.



Me just thinking about the problem



I think maybe the use of a double foreach stack could work. The first one where some variable a in a list {45,225,405} and then under that something like foreach x in {A,A+45,A+90}{...} so it would look like this:



foreach a in {45,225,405} {
foreach x in {{a},{a +45},{a +90}}{
draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- (0,{x*(2*3/360)},{2*sin(x)});
}
}


For the first set of helplines.



Unfortunately this attempt does not work for me



EDIT: It does work (see answer below), but is there a more efficient or neat way of solving this problem?







tikz-pgf tikz-3dplot






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 1 hour ago







sab hoque

















asked 1 hour ago









sab hoquesab hoque

1,415318




1,415318













  • In your double foreach put x in parentheses (0,{(x)*(2*3)/360},0) -- (0,{(x)*(2*3/360)},{2*sin(x)}). And you don't need curly brackets in {a,a+45,a+90}.

    – Kpym
    1 hour ago











  • Yes I just found that out now instead you require parenthesis, I will post a solution very soon

    – sab hoque
    1 hour ago






  • 1





    you can try pgfmathparse{equal(mod(x,180),0)} ifnumpgfmathresult=0 draw[-latex,help lines,red] (0,{x*(2*3/360},0) -- (-{2*sin(x)},{x*(2*3/360)},{2*sin(x)}); fi

    – touhami
    1 hour ago



















  • In your double foreach put x in parentheses (0,{(x)*(2*3)/360},0) -- (0,{(x)*(2*3/360)},{2*sin(x)}). And you don't need curly brackets in {a,a+45,a+90}.

    – Kpym
    1 hour ago











  • Yes I just found that out now instead you require parenthesis, I will post a solution very soon

    – sab hoque
    1 hour ago






  • 1





    you can try pgfmathparse{equal(mod(x,180),0)} ifnumpgfmathresult=0 draw[-latex,help lines,red] (0,{x*(2*3/360},0) -- (-{2*sin(x)},{x*(2*3/360)},{2*sin(x)}); fi

    – touhami
    1 hour ago

















In your double foreach put x in parentheses (0,{(x)*(2*3)/360},0) -- (0,{(x)*(2*3/360)},{2*sin(x)}). And you don't need curly brackets in {a,a+45,a+90}.

– Kpym
1 hour ago





In your double foreach put x in parentheses (0,{(x)*(2*3)/360},0) -- (0,{(x)*(2*3/360)},{2*sin(x)}). And you don't need curly brackets in {a,a+45,a+90}.

– Kpym
1 hour ago













Yes I just found that out now instead you require parenthesis, I will post a solution very soon

– sab hoque
1 hour ago





Yes I just found that out now instead you require parenthesis, I will post a solution very soon

– sab hoque
1 hour ago




1




1





you can try pgfmathparse{equal(mod(x,180),0)} ifnumpgfmathresult=0 draw[-latex,help lines,red] (0,{x*(2*3/360},0) -- (-{2*sin(x)},{x*(2*3/360)},{2*sin(x)}); fi

– touhami
1 hour ago





you can try pgfmathparse{equal(mod(x,180),0)} ifnumpgfmathresult=0 draw[-latex,help lines,red] (0,{x*(2*3/360},0) -- (-{2*sin(x)},{x*(2*3/360)},{2*sin(x)}); fi

– touhami
1 hour ago










2 Answers
2






active

oldest

votes


















3














Using the foreach in a double stack works. Essentially like this:



foreach a in {1485,1665} {
foreach x in {{a},(a +45),(a +90)}{
draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});
}
}


So the final code looks like this:



documentclass[10pt]{article}
usepackage{tikz}
usetikzlibrary{calc,patterns}
usepackage{tikz-3dplot}
usepackage[left=0.00cm, right=0.00cm]{geometry}
usepackage{physics}
usepackage{bm}
usepackage{rotating}

%Defining Diagonal Arrows:
newcommand{neswarrow}{%
begin{turn}{45}
raisebox{-1ex}{$leftrightarrow$}
end{turn}
}
newcommand{nwsearrow}{%
begin{turn}{45}
raisebox{0ex}{$updownarrow$}
end{turn}
}
begin{document}
tdplotsetmaincoords{75}{135}
begin{tikzpicture}[tdplot_main_coords,scale=0.5]
draw[red,very thick,-latex] plot[smooth,variable=x,domain=0:720,samples=360] (-{2*sin(x)},{x*(2*3/360)},{2*sin(x)});
foreach a in {45,225,405,585} {
foreach x in {{a},(a +45),(a +90)}{
draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- ({-2*sin(x)},{x*(2*3/360)},{2*sin(x)});
}
}
draw[very thick,red,latex-latex,densely dashed] (-2,12,2) -- (2,12,-2);
begin{scope}[canvas is xz plane at y=12,xscale=-1]
draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
node[anchor=south,transform shape,scale=1.5] at (0,3.5) {large Polariser};
draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (-90:1.5) arc (-90:-135:1.5) -- cycle;
draw[blue] (-112.5:1.3) ..controls +(-112.5:0.7) and +(180:0.7).. (0.7,-1.7) node[right] {$alpha$};
end{scope}
draw[very thick] (0,12,-3) -- (0,12,3);
draw[red,very thick,-latex] plot[smooth,variable=x,domain=720:1440,samples=360] (0,{x*(2*3/360)},{2*sin(x)});
foreach a in {765,945,1125,1305} {
foreach x in {{a},(a +45),(a +90)}{
draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- (0,{x*(2*3/360)},{2*sin(x)});
}
}
begin{scope}[canvas is xz plane at y=24,xscale=-1]
draw[very thick,densely dashed,latex-latex,red] (-90:2) -- (90:2);
end{scope}
begin{scope}[canvas is xz plane at y=24,xscale=-1]
draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (90:1) arc (90:30:1) -- cycle;
node[blue] at (60:1.4) {$theta$};
draw[very thick] (-150:3) -- (30:3);
node[anchor=south,transform shape,scale=1.5] at (90:3.5) {large Analyser};
end{scope}
draw[red,very thick,-latex] plot[smooth,variable=x,domain=1440:1800,samples=360] ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});
foreach a in {1485,1665} {
foreach x in {{a},(a +45),(a +90)}{
draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});
}
}
draw[-latex] (0,0,0) -- (0,32,0);
draw[-latex] (0,0,-3) -- (0,0,3);
draw[-latex] (3,0,0) -- (-3,0,0);
begin{scope}[canvas is xz plane at y=1.5,xscale=-1]
draw[red] (2,2) .. controls +(45:0.5) and +(-120:0.5).. (3,2.7);
end{scope}
node[scale=0.75,red] at (-3,4,3.7) {$bm{E}=A_{neswarrow}cosleft(2pi f t+phi_{neswarrow}right)ket{neswarrow}+0ket{nwsearrow}$};
draw (0,12,-2.7) .. controls +(0:1) and +(-135:2).. (4,12,-3) node[below,scale=0.75] {Axis of Polarisation};
begin{scope}[canvas is xz plane at y=16.5,xscale=-1]
draw[red] (0,-2) .. controls +(-90:1) and +(0:0.5).. (-2,-4.4) node[left,scale=0.75] {$bm{E}=A_{neswarrow}cos(alpha)cosleft(2pi ft+phi_{neswarrow}right)ket{updownarrow} + 0ket{leftrightarrow}$};
end{scope}
end{tikzpicture}
tdplotsetmaincoords{0}{0}
begin{tikzpicture}[remember picture,overlay]
begin{scope}[xshift=-5.8cm,yshift=4cm]
draw (1,1) circle (1.1);
draw[red,thick,latex-latex] (0.5,0.5) -- (1.5,1.5);
draw[thick] (1,0.25) -- (1,1.75);
draw[red,densely dashed,thick] (1.5,1.5) -- (1,1.5) (1,0.5) -- (0.5,0.5);
node[left,scale=0.6,red,fill=white] at (1,1.5) {$A_{neswarrow}cos(alpha)$};
draw[blue,pattern=north west lines,pattern color=blue] (1,1) -- +(45:0.25) arc (45:90:0.25) -- cycle;
draw[blue] (1,1) +(67.5:0.2) ..controls +(45:0.3) and +(180:0.1).. (1.4,1) node[right] {$alpha$};
node[below,scale=0.75] at (1,-0.1) {Polariser};
end{scope}
begin{scope}[xshift=-0.8cm,yshift=4.1cm,rotate=-60]
draw (0,0) circle (1.1);
draw[red,thick,latex-latex] (150:0.7071067812) -- (-30:0.7071067812);
draw[thick] (0,-0.75) -- (0,0.75);
draw[red,densely dashed,thick] (150:0.7071067812) -- (0,0.3535533906) (0,-0.3535533906) -- (-30:0.7071067812);
draw[blue,pattern=north west lines,pattern color=blue] (0,0) -- (150:0.25) arc (150:90:0.25) -- cycle;
draw[blue] (120:0.2) ..controls +(120:0.3) and +(-90:0.1).. (-0.3,0.6) node[above right=-0.07cm] {$theta$};
node[below,scale=0.75] at (-30:1.1) {Analyser};
end{scope}
end{tikzpicture}
end{document}


And that fixes my problem:



enter image description here



Still wondering if there is something more tidy, neat or general than my solution?






share|improve this answer































    1














    Here is an alternative. Whether or not it is more tidy, I don't know. In principle, tips=on proper draw from p. 187 of the pgfmanual, which Paul Gaborit pointed out here, should do the trick. But I couldn't make this work, so I implemented a length check by hand. This might be more useful in situations in which it is not so easy to seen when the zero-length paths occur analytically.



    documentclass[10pt]{article}
    usepackage{tikz}
    usetikzlibrary{calc,patterns}
    usepackage{tikz-3dplot}
    usepackage[left=0.00cm, right=0.00cm]{geometry}
    usepackage{physics}
    usepackage{bm}
    usepackage{rotating}

    %Defining Diagonal Arrows:
    newcommand{neswarrow}{%
    begin{turn}{45}
    raisebox{-1ex}{$leftrightarrow$}
    end{turn}
    }
    newcommand{nwsearrow}{%
    begin{turn}{45}
    raisebox{0ex}{$updownarrow$}
    end{turn}
    }
    begin{document}
    tdplotsetmaincoords{75}{135}
    begin{tikzpicture}[tdplot_main_coords,scale=0.5]
    draw[red,very thick,-latex] plot[smooth,variable=x,domain=0:720,samples=360] (-{2*sin(x)},{x*(2*3/360)},{2*sin(x)});
    foreach X in {45,90,...,720} { %LOOK HERE FOR FIRST SET OF ARROWS
    path let p1=($(0,{X*(2*3/360},0) -
    (-{2*sin(X)},{X*(2*3/360)},{2*sin(X)})$),n1={veclen(x1,y1)} in
    pgfextra{xdefmylen{n1}};
    ifdimmylen>1pt
    draw[-latex,help lines,red] (0,{X*(2*3/360},0) -- (-{2*sin(X)},{X*(2*3/360)},{2*sin(X)});
    fi
    }
    draw[very thick,red,latex-latex,densely dashed] (-2,12,2) -- (2,12,-2);
    begin{scope}[canvas is xz plane at y=12,xscale=-1]
    draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
    node[anchor=south,transform shape,scale=1.5] at (0,3.5) {large Polariser};
    draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (-90:1.5) arc (-90:-135:1.5) -- cycle;
    draw[blue] (-112.5:1.3) ..controls +(-112.5:0.7) and +(180:0.7).. (0.7,-1.7) node[right] {$alpha$};
    end{scope}
    draw[very thick] (0,12,-3) -- (0,12,3);
    draw[red,very thick,-latex] plot[smooth,variable=x,domain=720:1440,samples=360] (0,{x*(2*3/360)},{2*sin(x)});
    foreach X in {720,765,...,1440} {%LOOK HERE FOR SECOND SET OF ARROWS
    path let p1=($(0,{X*(2*3)/360},0) - (0,{X*(2*3/360)},{2*sin(X)})$),
    n1={veclen(x1,y1)} in pgfextra{xdefmylen{n1}};
    ifdimmylen>1pt
    draw[-latex,help lines,red,] (0,{X*(2*3)/360},0) -- (0,{X*(2*3/360)},{2*sin(X)});
    fi}
    begin{scope}[canvas is xz plane at y=24,xscale=-1]
    draw[very thick,densely dashed,latex-latex,red] (-90:2) -- (90:2);
    end{scope}
    begin{scope}[canvas is xz plane at y=24,xscale=-1]
    draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
    draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (90:1) arc (90:30:1) -- cycle;
    node[blue] at (60:1.4) {$theta$};
    draw[very thick] (-150:3) -- (30:3);
    node[anchor=south,transform shape,scale=1.5] at (90:3.5) {large Analyser};
    end{scope}
    draw[red,very thick,-latex] plot[smooth,variable=x,domain=1440:1800,samples=360] ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});
    foreach X in {1440,1485,...,1800} { %LOOK HERE FOR THIRD SET OF ARROWS
    path let p1=($(0,{X*(2*3)/360},0) - ({-0.7071067812*sin(X)},{X*(2*3/360)},{0.5*sin(X)})$),
    n1={veclen(x1,y1)} in
    pgfextra{xdefmylen{n1}};
    ifdimmylen>1pt
    draw[-latex,help lines,red] (0,{X*(2*3)/360},0) -- ({-0.7071067812*sin(X)},{X*(2*3/360)},{0.5*sin(X)});
    fi}
    draw[-latex] (0,0,0) -- (0,32,0);
    draw[-latex] (0,0,-3) -- (0,0,3);
    draw[-latex] (3,0,0) -- (-3,0,0);
    begin{scope}[canvas is xz plane at y=1.5,xscale=-1]
    draw[red] (2,2) .. controls +(45:0.5) and +(-120:0.5).. (3,2.7);
    end{scope}
    node[scale=0.75,red] at (-3,4,3.7) {$bm{E}=A_{neswarrow}cosleft(2pi f t+phi_{neswarrow}right)ket{neswarrow}+0ket{nwsearrow}$};
    draw (0,12,-2.7) .. controls +(0:1) and +(-135:2).. (4,12,-3) node[below,scale=0.75] {Axis of Polarisation};
    begin{scope}[canvas is xz plane at y=16.5,xscale=-1]
    draw[red] (0,-2) .. controls +(-90:1) and +(0:0.5).. (-2,-4.4) node[left,scale=0.75] {$bm{E}=A_{neswarrow}cos(alpha)cosleft(2pi ft+phi_{neswarrow}right)ket{updownarrow} + 0ket{leftrightarrow}$};
    end{scope}
    end{tikzpicture}
    tdplotsetmaincoords{0}{0}
    begin{tikzpicture}[remember picture,overlay]
    begin{scope}[xshift=-5.8cm,yshift=4cm]
    draw (1,1) circle (1.1);
    draw[red,thick,latex-latex] (0.5,0.5) -- (1.5,1.5);
    draw[thick] (1,0.25) -- (1,1.75);
    draw[red,densely dashed,thick] (1.5,1.5) -- (1,1.5) (1,0.5) -- (0.5,0.5);
    node[left,scale=0.6,red,fill=white] at (1,1.5) {$A_{neswarrow}cos(alpha)$};
    draw[blue,pattern=north west lines,pattern color=blue] (1,1) -- +(45:0.25) arc (45:90:0.25) -- cycle;
    draw[blue] (1,1) +(67.5:0.2) ..controls +(45:0.3) and +(180:0.1).. (1.4,1) node[right] {$alpha$};
    node[below,scale=0.75] at (1,-0.1) {Polariser};
    end{scope}
    begin{scope}[xshift=-0.8cm,yshift=4.1cm,rotate=-60]
    draw (0,0) circle (1.1);
    draw[red,thick,latex-latex] (150:0.7071067812) -- (-30:0.7071067812);
    draw[thick] (0,-0.75) -- (0,0.75);
    draw[red,densely dashed,thick] (150:0.7071067812) -- (0,0.3535533906) (0,-0.3535533906) -- (-30:0.7071067812);
    draw[blue,pattern=north west lines,pattern color=blue] (0,0) -- (150:0.25) arc (150:90:0.25) -- cycle;
    draw[blue] (120:0.2) ..controls +(120:0.3) and +(-90:0.1).. (-0.3,0.6) node[above right=-0.07cm] {$theta$};
    node[below,scale=0.75] at (-30:1.1) {Analyser};
    end{scope}
    end{tikzpicture}
    end{document}


    enter image description here






    share|improve this answer























      Your Answer








      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "85"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f469835%2fhow-to-change-foreach-to-omit-a-certain-multiple%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3














      Using the foreach in a double stack works. Essentially like this:



      foreach a in {1485,1665} {
      foreach x in {{a},(a +45),(a +90)}{
      draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});
      }
      }


      So the final code looks like this:



      documentclass[10pt]{article}
      usepackage{tikz}
      usetikzlibrary{calc,patterns}
      usepackage{tikz-3dplot}
      usepackage[left=0.00cm, right=0.00cm]{geometry}
      usepackage{physics}
      usepackage{bm}
      usepackage{rotating}

      %Defining Diagonal Arrows:
      newcommand{neswarrow}{%
      begin{turn}{45}
      raisebox{-1ex}{$leftrightarrow$}
      end{turn}
      }
      newcommand{nwsearrow}{%
      begin{turn}{45}
      raisebox{0ex}{$updownarrow$}
      end{turn}
      }
      begin{document}
      tdplotsetmaincoords{75}{135}
      begin{tikzpicture}[tdplot_main_coords,scale=0.5]
      draw[red,very thick,-latex] plot[smooth,variable=x,domain=0:720,samples=360] (-{2*sin(x)},{x*(2*3/360)},{2*sin(x)});
      foreach a in {45,225,405,585} {
      foreach x in {{a},(a +45),(a +90)}{
      draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- ({-2*sin(x)},{x*(2*3/360)},{2*sin(x)});
      }
      }
      draw[very thick,red,latex-latex,densely dashed] (-2,12,2) -- (2,12,-2);
      begin{scope}[canvas is xz plane at y=12,xscale=-1]
      draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
      node[anchor=south,transform shape,scale=1.5] at (0,3.5) {large Polariser};
      draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (-90:1.5) arc (-90:-135:1.5) -- cycle;
      draw[blue] (-112.5:1.3) ..controls +(-112.5:0.7) and +(180:0.7).. (0.7,-1.7) node[right] {$alpha$};
      end{scope}
      draw[very thick] (0,12,-3) -- (0,12,3);
      draw[red,very thick,-latex] plot[smooth,variable=x,domain=720:1440,samples=360] (0,{x*(2*3/360)},{2*sin(x)});
      foreach a in {765,945,1125,1305} {
      foreach x in {{a},(a +45),(a +90)}{
      draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- (0,{x*(2*3/360)},{2*sin(x)});
      }
      }
      begin{scope}[canvas is xz plane at y=24,xscale=-1]
      draw[very thick,densely dashed,latex-latex,red] (-90:2) -- (90:2);
      end{scope}
      begin{scope}[canvas is xz plane at y=24,xscale=-1]
      draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
      draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (90:1) arc (90:30:1) -- cycle;
      node[blue] at (60:1.4) {$theta$};
      draw[very thick] (-150:3) -- (30:3);
      node[anchor=south,transform shape,scale=1.5] at (90:3.5) {large Analyser};
      end{scope}
      draw[red,very thick,-latex] plot[smooth,variable=x,domain=1440:1800,samples=360] ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});
      foreach a in {1485,1665} {
      foreach x in {{a},(a +45),(a +90)}{
      draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});
      }
      }
      draw[-latex] (0,0,0) -- (0,32,0);
      draw[-latex] (0,0,-3) -- (0,0,3);
      draw[-latex] (3,0,0) -- (-3,0,0);
      begin{scope}[canvas is xz plane at y=1.5,xscale=-1]
      draw[red] (2,2) .. controls +(45:0.5) and +(-120:0.5).. (3,2.7);
      end{scope}
      node[scale=0.75,red] at (-3,4,3.7) {$bm{E}=A_{neswarrow}cosleft(2pi f t+phi_{neswarrow}right)ket{neswarrow}+0ket{nwsearrow}$};
      draw (0,12,-2.7) .. controls +(0:1) and +(-135:2).. (4,12,-3) node[below,scale=0.75] {Axis of Polarisation};
      begin{scope}[canvas is xz plane at y=16.5,xscale=-1]
      draw[red] (0,-2) .. controls +(-90:1) and +(0:0.5).. (-2,-4.4) node[left,scale=0.75] {$bm{E}=A_{neswarrow}cos(alpha)cosleft(2pi ft+phi_{neswarrow}right)ket{updownarrow} + 0ket{leftrightarrow}$};
      end{scope}
      end{tikzpicture}
      tdplotsetmaincoords{0}{0}
      begin{tikzpicture}[remember picture,overlay]
      begin{scope}[xshift=-5.8cm,yshift=4cm]
      draw (1,1) circle (1.1);
      draw[red,thick,latex-latex] (0.5,0.5) -- (1.5,1.5);
      draw[thick] (1,0.25) -- (1,1.75);
      draw[red,densely dashed,thick] (1.5,1.5) -- (1,1.5) (1,0.5) -- (0.5,0.5);
      node[left,scale=0.6,red,fill=white] at (1,1.5) {$A_{neswarrow}cos(alpha)$};
      draw[blue,pattern=north west lines,pattern color=blue] (1,1) -- +(45:0.25) arc (45:90:0.25) -- cycle;
      draw[blue] (1,1) +(67.5:0.2) ..controls +(45:0.3) and +(180:0.1).. (1.4,1) node[right] {$alpha$};
      node[below,scale=0.75] at (1,-0.1) {Polariser};
      end{scope}
      begin{scope}[xshift=-0.8cm,yshift=4.1cm,rotate=-60]
      draw (0,0) circle (1.1);
      draw[red,thick,latex-latex] (150:0.7071067812) -- (-30:0.7071067812);
      draw[thick] (0,-0.75) -- (0,0.75);
      draw[red,densely dashed,thick] (150:0.7071067812) -- (0,0.3535533906) (0,-0.3535533906) -- (-30:0.7071067812);
      draw[blue,pattern=north west lines,pattern color=blue] (0,0) -- (150:0.25) arc (150:90:0.25) -- cycle;
      draw[blue] (120:0.2) ..controls +(120:0.3) and +(-90:0.1).. (-0.3,0.6) node[above right=-0.07cm] {$theta$};
      node[below,scale=0.75] at (-30:1.1) {Analyser};
      end{scope}
      end{tikzpicture}
      end{document}


      And that fixes my problem:



      enter image description here



      Still wondering if there is something more tidy, neat or general than my solution?






      share|improve this answer




























        3














        Using the foreach in a double stack works. Essentially like this:



        foreach a in {1485,1665} {
        foreach x in {{a},(a +45),(a +90)}{
        draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});
        }
        }


        So the final code looks like this:



        documentclass[10pt]{article}
        usepackage{tikz}
        usetikzlibrary{calc,patterns}
        usepackage{tikz-3dplot}
        usepackage[left=0.00cm, right=0.00cm]{geometry}
        usepackage{physics}
        usepackage{bm}
        usepackage{rotating}

        %Defining Diagonal Arrows:
        newcommand{neswarrow}{%
        begin{turn}{45}
        raisebox{-1ex}{$leftrightarrow$}
        end{turn}
        }
        newcommand{nwsearrow}{%
        begin{turn}{45}
        raisebox{0ex}{$updownarrow$}
        end{turn}
        }
        begin{document}
        tdplotsetmaincoords{75}{135}
        begin{tikzpicture}[tdplot_main_coords,scale=0.5]
        draw[red,very thick,-latex] plot[smooth,variable=x,domain=0:720,samples=360] (-{2*sin(x)},{x*(2*3/360)},{2*sin(x)});
        foreach a in {45,225,405,585} {
        foreach x in {{a},(a +45),(a +90)}{
        draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- ({-2*sin(x)},{x*(2*3/360)},{2*sin(x)});
        }
        }
        draw[very thick,red,latex-latex,densely dashed] (-2,12,2) -- (2,12,-2);
        begin{scope}[canvas is xz plane at y=12,xscale=-1]
        draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
        node[anchor=south,transform shape,scale=1.5] at (0,3.5) {large Polariser};
        draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (-90:1.5) arc (-90:-135:1.5) -- cycle;
        draw[blue] (-112.5:1.3) ..controls +(-112.5:0.7) and +(180:0.7).. (0.7,-1.7) node[right] {$alpha$};
        end{scope}
        draw[very thick] (0,12,-3) -- (0,12,3);
        draw[red,very thick,-latex] plot[smooth,variable=x,domain=720:1440,samples=360] (0,{x*(2*3/360)},{2*sin(x)});
        foreach a in {765,945,1125,1305} {
        foreach x in {{a},(a +45),(a +90)}{
        draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- (0,{x*(2*3/360)},{2*sin(x)});
        }
        }
        begin{scope}[canvas is xz plane at y=24,xscale=-1]
        draw[very thick,densely dashed,latex-latex,red] (-90:2) -- (90:2);
        end{scope}
        begin{scope}[canvas is xz plane at y=24,xscale=-1]
        draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
        draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (90:1) arc (90:30:1) -- cycle;
        node[blue] at (60:1.4) {$theta$};
        draw[very thick] (-150:3) -- (30:3);
        node[anchor=south,transform shape,scale=1.5] at (90:3.5) {large Analyser};
        end{scope}
        draw[red,very thick,-latex] plot[smooth,variable=x,domain=1440:1800,samples=360] ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});
        foreach a in {1485,1665} {
        foreach x in {{a},(a +45),(a +90)}{
        draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});
        }
        }
        draw[-latex] (0,0,0) -- (0,32,0);
        draw[-latex] (0,0,-3) -- (0,0,3);
        draw[-latex] (3,0,0) -- (-3,0,0);
        begin{scope}[canvas is xz plane at y=1.5,xscale=-1]
        draw[red] (2,2) .. controls +(45:0.5) and +(-120:0.5).. (3,2.7);
        end{scope}
        node[scale=0.75,red] at (-3,4,3.7) {$bm{E}=A_{neswarrow}cosleft(2pi f t+phi_{neswarrow}right)ket{neswarrow}+0ket{nwsearrow}$};
        draw (0,12,-2.7) .. controls +(0:1) and +(-135:2).. (4,12,-3) node[below,scale=0.75] {Axis of Polarisation};
        begin{scope}[canvas is xz plane at y=16.5,xscale=-1]
        draw[red] (0,-2) .. controls +(-90:1) and +(0:0.5).. (-2,-4.4) node[left,scale=0.75] {$bm{E}=A_{neswarrow}cos(alpha)cosleft(2pi ft+phi_{neswarrow}right)ket{updownarrow} + 0ket{leftrightarrow}$};
        end{scope}
        end{tikzpicture}
        tdplotsetmaincoords{0}{0}
        begin{tikzpicture}[remember picture,overlay]
        begin{scope}[xshift=-5.8cm,yshift=4cm]
        draw (1,1) circle (1.1);
        draw[red,thick,latex-latex] (0.5,0.5) -- (1.5,1.5);
        draw[thick] (1,0.25) -- (1,1.75);
        draw[red,densely dashed,thick] (1.5,1.5) -- (1,1.5) (1,0.5) -- (0.5,0.5);
        node[left,scale=0.6,red,fill=white] at (1,1.5) {$A_{neswarrow}cos(alpha)$};
        draw[blue,pattern=north west lines,pattern color=blue] (1,1) -- +(45:0.25) arc (45:90:0.25) -- cycle;
        draw[blue] (1,1) +(67.5:0.2) ..controls +(45:0.3) and +(180:0.1).. (1.4,1) node[right] {$alpha$};
        node[below,scale=0.75] at (1,-0.1) {Polariser};
        end{scope}
        begin{scope}[xshift=-0.8cm,yshift=4.1cm,rotate=-60]
        draw (0,0) circle (1.1);
        draw[red,thick,latex-latex] (150:0.7071067812) -- (-30:0.7071067812);
        draw[thick] (0,-0.75) -- (0,0.75);
        draw[red,densely dashed,thick] (150:0.7071067812) -- (0,0.3535533906) (0,-0.3535533906) -- (-30:0.7071067812);
        draw[blue,pattern=north west lines,pattern color=blue] (0,0) -- (150:0.25) arc (150:90:0.25) -- cycle;
        draw[blue] (120:0.2) ..controls +(120:0.3) and +(-90:0.1).. (-0.3,0.6) node[above right=-0.07cm] {$theta$};
        node[below,scale=0.75] at (-30:1.1) {Analyser};
        end{scope}
        end{tikzpicture}
        end{document}


        And that fixes my problem:



        enter image description here



        Still wondering if there is something more tidy, neat or general than my solution?






        share|improve this answer


























          3












          3








          3







          Using the foreach in a double stack works. Essentially like this:



          foreach a in {1485,1665} {
          foreach x in {{a},(a +45),(a +90)}{
          draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});
          }
          }


          So the final code looks like this:



          documentclass[10pt]{article}
          usepackage{tikz}
          usetikzlibrary{calc,patterns}
          usepackage{tikz-3dplot}
          usepackage[left=0.00cm, right=0.00cm]{geometry}
          usepackage{physics}
          usepackage{bm}
          usepackage{rotating}

          %Defining Diagonal Arrows:
          newcommand{neswarrow}{%
          begin{turn}{45}
          raisebox{-1ex}{$leftrightarrow$}
          end{turn}
          }
          newcommand{nwsearrow}{%
          begin{turn}{45}
          raisebox{0ex}{$updownarrow$}
          end{turn}
          }
          begin{document}
          tdplotsetmaincoords{75}{135}
          begin{tikzpicture}[tdplot_main_coords,scale=0.5]
          draw[red,very thick,-latex] plot[smooth,variable=x,domain=0:720,samples=360] (-{2*sin(x)},{x*(2*3/360)},{2*sin(x)});
          foreach a in {45,225,405,585} {
          foreach x in {{a},(a +45),(a +90)}{
          draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- ({-2*sin(x)},{x*(2*3/360)},{2*sin(x)});
          }
          }
          draw[very thick,red,latex-latex,densely dashed] (-2,12,2) -- (2,12,-2);
          begin{scope}[canvas is xz plane at y=12,xscale=-1]
          draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
          node[anchor=south,transform shape,scale=1.5] at (0,3.5) {large Polariser};
          draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (-90:1.5) arc (-90:-135:1.5) -- cycle;
          draw[blue] (-112.5:1.3) ..controls +(-112.5:0.7) and +(180:0.7).. (0.7,-1.7) node[right] {$alpha$};
          end{scope}
          draw[very thick] (0,12,-3) -- (0,12,3);
          draw[red,very thick,-latex] plot[smooth,variable=x,domain=720:1440,samples=360] (0,{x*(2*3/360)},{2*sin(x)});
          foreach a in {765,945,1125,1305} {
          foreach x in {{a},(a +45),(a +90)}{
          draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- (0,{x*(2*3/360)},{2*sin(x)});
          }
          }
          begin{scope}[canvas is xz plane at y=24,xscale=-1]
          draw[very thick,densely dashed,latex-latex,red] (-90:2) -- (90:2);
          end{scope}
          begin{scope}[canvas is xz plane at y=24,xscale=-1]
          draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
          draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (90:1) arc (90:30:1) -- cycle;
          node[blue] at (60:1.4) {$theta$};
          draw[very thick] (-150:3) -- (30:3);
          node[anchor=south,transform shape,scale=1.5] at (90:3.5) {large Analyser};
          end{scope}
          draw[red,very thick,-latex] plot[smooth,variable=x,domain=1440:1800,samples=360] ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});
          foreach a in {1485,1665} {
          foreach x in {{a},(a +45),(a +90)}{
          draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});
          }
          }
          draw[-latex] (0,0,0) -- (0,32,0);
          draw[-latex] (0,0,-3) -- (0,0,3);
          draw[-latex] (3,0,0) -- (-3,0,0);
          begin{scope}[canvas is xz plane at y=1.5,xscale=-1]
          draw[red] (2,2) .. controls +(45:0.5) and +(-120:0.5).. (3,2.7);
          end{scope}
          node[scale=0.75,red] at (-3,4,3.7) {$bm{E}=A_{neswarrow}cosleft(2pi f t+phi_{neswarrow}right)ket{neswarrow}+0ket{nwsearrow}$};
          draw (0,12,-2.7) .. controls +(0:1) and +(-135:2).. (4,12,-3) node[below,scale=0.75] {Axis of Polarisation};
          begin{scope}[canvas is xz plane at y=16.5,xscale=-1]
          draw[red] (0,-2) .. controls +(-90:1) and +(0:0.5).. (-2,-4.4) node[left,scale=0.75] {$bm{E}=A_{neswarrow}cos(alpha)cosleft(2pi ft+phi_{neswarrow}right)ket{updownarrow} + 0ket{leftrightarrow}$};
          end{scope}
          end{tikzpicture}
          tdplotsetmaincoords{0}{0}
          begin{tikzpicture}[remember picture,overlay]
          begin{scope}[xshift=-5.8cm,yshift=4cm]
          draw (1,1) circle (1.1);
          draw[red,thick,latex-latex] (0.5,0.5) -- (1.5,1.5);
          draw[thick] (1,0.25) -- (1,1.75);
          draw[red,densely dashed,thick] (1.5,1.5) -- (1,1.5) (1,0.5) -- (0.5,0.5);
          node[left,scale=0.6,red,fill=white] at (1,1.5) {$A_{neswarrow}cos(alpha)$};
          draw[blue,pattern=north west lines,pattern color=blue] (1,1) -- +(45:0.25) arc (45:90:0.25) -- cycle;
          draw[blue] (1,1) +(67.5:0.2) ..controls +(45:0.3) and +(180:0.1).. (1.4,1) node[right] {$alpha$};
          node[below,scale=0.75] at (1,-0.1) {Polariser};
          end{scope}
          begin{scope}[xshift=-0.8cm,yshift=4.1cm,rotate=-60]
          draw (0,0) circle (1.1);
          draw[red,thick,latex-latex] (150:0.7071067812) -- (-30:0.7071067812);
          draw[thick] (0,-0.75) -- (0,0.75);
          draw[red,densely dashed,thick] (150:0.7071067812) -- (0,0.3535533906) (0,-0.3535533906) -- (-30:0.7071067812);
          draw[blue,pattern=north west lines,pattern color=blue] (0,0) -- (150:0.25) arc (150:90:0.25) -- cycle;
          draw[blue] (120:0.2) ..controls +(120:0.3) and +(-90:0.1).. (-0.3,0.6) node[above right=-0.07cm] {$theta$};
          node[below,scale=0.75] at (-30:1.1) {Analyser};
          end{scope}
          end{tikzpicture}
          end{document}


          And that fixes my problem:



          enter image description here



          Still wondering if there is something more tidy, neat or general than my solution?






          share|improve this answer













          Using the foreach in a double stack works. Essentially like this:



          foreach a in {1485,1665} {
          foreach x in {{a},(a +45),(a +90)}{
          draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});
          }
          }


          So the final code looks like this:



          documentclass[10pt]{article}
          usepackage{tikz}
          usetikzlibrary{calc,patterns}
          usepackage{tikz-3dplot}
          usepackage[left=0.00cm, right=0.00cm]{geometry}
          usepackage{physics}
          usepackage{bm}
          usepackage{rotating}

          %Defining Diagonal Arrows:
          newcommand{neswarrow}{%
          begin{turn}{45}
          raisebox{-1ex}{$leftrightarrow$}
          end{turn}
          }
          newcommand{nwsearrow}{%
          begin{turn}{45}
          raisebox{0ex}{$updownarrow$}
          end{turn}
          }
          begin{document}
          tdplotsetmaincoords{75}{135}
          begin{tikzpicture}[tdplot_main_coords,scale=0.5]
          draw[red,very thick,-latex] plot[smooth,variable=x,domain=0:720,samples=360] (-{2*sin(x)},{x*(2*3/360)},{2*sin(x)});
          foreach a in {45,225,405,585} {
          foreach x in {{a},(a +45),(a +90)}{
          draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- ({-2*sin(x)},{x*(2*3/360)},{2*sin(x)});
          }
          }
          draw[very thick,red,latex-latex,densely dashed] (-2,12,2) -- (2,12,-2);
          begin{scope}[canvas is xz plane at y=12,xscale=-1]
          draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
          node[anchor=south,transform shape,scale=1.5] at (0,3.5) {large Polariser};
          draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (-90:1.5) arc (-90:-135:1.5) -- cycle;
          draw[blue] (-112.5:1.3) ..controls +(-112.5:0.7) and +(180:0.7).. (0.7,-1.7) node[right] {$alpha$};
          end{scope}
          draw[very thick] (0,12,-3) -- (0,12,3);
          draw[red,very thick,-latex] plot[smooth,variable=x,domain=720:1440,samples=360] (0,{x*(2*3/360)},{2*sin(x)});
          foreach a in {765,945,1125,1305} {
          foreach x in {{a},(a +45),(a +90)}{
          draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- (0,{x*(2*3/360)},{2*sin(x)});
          }
          }
          begin{scope}[canvas is xz plane at y=24,xscale=-1]
          draw[very thick,densely dashed,latex-latex,red] (-90:2) -- (90:2);
          end{scope}
          begin{scope}[canvas is xz plane at y=24,xscale=-1]
          draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
          draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (90:1) arc (90:30:1) -- cycle;
          node[blue] at (60:1.4) {$theta$};
          draw[very thick] (-150:3) -- (30:3);
          node[anchor=south,transform shape,scale=1.5] at (90:3.5) {large Analyser};
          end{scope}
          draw[red,very thick,-latex] plot[smooth,variable=x,domain=1440:1800,samples=360] ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});
          foreach a in {1485,1665} {
          foreach x in {{a},(a +45),(a +90)}{
          draw[-latex,help lines,red] (0,{x*(2*3)/360},0) -- ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});
          }
          }
          draw[-latex] (0,0,0) -- (0,32,0);
          draw[-latex] (0,0,-3) -- (0,0,3);
          draw[-latex] (3,0,0) -- (-3,0,0);
          begin{scope}[canvas is xz plane at y=1.5,xscale=-1]
          draw[red] (2,2) .. controls +(45:0.5) and +(-120:0.5).. (3,2.7);
          end{scope}
          node[scale=0.75,red] at (-3,4,3.7) {$bm{E}=A_{neswarrow}cosleft(2pi f t+phi_{neswarrow}right)ket{neswarrow}+0ket{nwsearrow}$};
          draw (0,12,-2.7) .. controls +(0:1) and +(-135:2).. (4,12,-3) node[below,scale=0.75] {Axis of Polarisation};
          begin{scope}[canvas is xz plane at y=16.5,xscale=-1]
          draw[red] (0,-2) .. controls +(-90:1) and +(0:0.5).. (-2,-4.4) node[left,scale=0.75] {$bm{E}=A_{neswarrow}cos(alpha)cosleft(2pi ft+phi_{neswarrow}right)ket{updownarrow} + 0ket{leftrightarrow}$};
          end{scope}
          end{tikzpicture}
          tdplotsetmaincoords{0}{0}
          begin{tikzpicture}[remember picture,overlay]
          begin{scope}[xshift=-5.8cm,yshift=4cm]
          draw (1,1) circle (1.1);
          draw[red,thick,latex-latex] (0.5,0.5) -- (1.5,1.5);
          draw[thick] (1,0.25) -- (1,1.75);
          draw[red,densely dashed,thick] (1.5,1.5) -- (1,1.5) (1,0.5) -- (0.5,0.5);
          node[left,scale=0.6,red,fill=white] at (1,1.5) {$A_{neswarrow}cos(alpha)$};
          draw[blue,pattern=north west lines,pattern color=blue] (1,1) -- +(45:0.25) arc (45:90:0.25) -- cycle;
          draw[blue] (1,1) +(67.5:0.2) ..controls +(45:0.3) and +(180:0.1).. (1.4,1) node[right] {$alpha$};
          node[below,scale=0.75] at (1,-0.1) {Polariser};
          end{scope}
          begin{scope}[xshift=-0.8cm,yshift=4.1cm,rotate=-60]
          draw (0,0) circle (1.1);
          draw[red,thick,latex-latex] (150:0.7071067812) -- (-30:0.7071067812);
          draw[thick] (0,-0.75) -- (0,0.75);
          draw[red,densely dashed,thick] (150:0.7071067812) -- (0,0.3535533906) (0,-0.3535533906) -- (-30:0.7071067812);
          draw[blue,pattern=north west lines,pattern color=blue] (0,0) -- (150:0.25) arc (150:90:0.25) -- cycle;
          draw[blue] (120:0.2) ..controls +(120:0.3) and +(-90:0.1).. (-0.3,0.6) node[above right=-0.07cm] {$theta$};
          node[below,scale=0.75] at (-30:1.1) {Analyser};
          end{scope}
          end{tikzpicture}
          end{document}


          And that fixes my problem:



          enter image description here



          Still wondering if there is something more tidy, neat or general than my solution?







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered 1 hour ago









          sab hoquesab hoque

          1,415318




          1,415318























              1














              Here is an alternative. Whether or not it is more tidy, I don't know. In principle, tips=on proper draw from p. 187 of the pgfmanual, which Paul Gaborit pointed out here, should do the trick. But I couldn't make this work, so I implemented a length check by hand. This might be more useful in situations in which it is not so easy to seen when the zero-length paths occur analytically.



              documentclass[10pt]{article}
              usepackage{tikz}
              usetikzlibrary{calc,patterns}
              usepackage{tikz-3dplot}
              usepackage[left=0.00cm, right=0.00cm]{geometry}
              usepackage{physics}
              usepackage{bm}
              usepackage{rotating}

              %Defining Diagonal Arrows:
              newcommand{neswarrow}{%
              begin{turn}{45}
              raisebox{-1ex}{$leftrightarrow$}
              end{turn}
              }
              newcommand{nwsearrow}{%
              begin{turn}{45}
              raisebox{0ex}{$updownarrow$}
              end{turn}
              }
              begin{document}
              tdplotsetmaincoords{75}{135}
              begin{tikzpicture}[tdplot_main_coords,scale=0.5]
              draw[red,very thick,-latex] plot[smooth,variable=x,domain=0:720,samples=360] (-{2*sin(x)},{x*(2*3/360)},{2*sin(x)});
              foreach X in {45,90,...,720} { %LOOK HERE FOR FIRST SET OF ARROWS
              path let p1=($(0,{X*(2*3/360},0) -
              (-{2*sin(X)},{X*(2*3/360)},{2*sin(X)})$),n1={veclen(x1,y1)} in
              pgfextra{xdefmylen{n1}};
              ifdimmylen>1pt
              draw[-latex,help lines,red] (0,{X*(2*3/360},0) -- (-{2*sin(X)},{X*(2*3/360)},{2*sin(X)});
              fi
              }
              draw[very thick,red,latex-latex,densely dashed] (-2,12,2) -- (2,12,-2);
              begin{scope}[canvas is xz plane at y=12,xscale=-1]
              draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
              node[anchor=south,transform shape,scale=1.5] at (0,3.5) {large Polariser};
              draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (-90:1.5) arc (-90:-135:1.5) -- cycle;
              draw[blue] (-112.5:1.3) ..controls +(-112.5:0.7) and +(180:0.7).. (0.7,-1.7) node[right] {$alpha$};
              end{scope}
              draw[very thick] (0,12,-3) -- (0,12,3);
              draw[red,very thick,-latex] plot[smooth,variable=x,domain=720:1440,samples=360] (0,{x*(2*3/360)},{2*sin(x)});
              foreach X in {720,765,...,1440} {%LOOK HERE FOR SECOND SET OF ARROWS
              path let p1=($(0,{X*(2*3)/360},0) - (0,{X*(2*3/360)},{2*sin(X)})$),
              n1={veclen(x1,y1)} in pgfextra{xdefmylen{n1}};
              ifdimmylen>1pt
              draw[-latex,help lines,red,] (0,{X*(2*3)/360},0) -- (0,{X*(2*3/360)},{2*sin(X)});
              fi}
              begin{scope}[canvas is xz plane at y=24,xscale=-1]
              draw[very thick,densely dashed,latex-latex,red] (-90:2) -- (90:2);
              end{scope}
              begin{scope}[canvas is xz plane at y=24,xscale=-1]
              draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
              draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (90:1) arc (90:30:1) -- cycle;
              node[blue] at (60:1.4) {$theta$};
              draw[very thick] (-150:3) -- (30:3);
              node[anchor=south,transform shape,scale=1.5] at (90:3.5) {large Analyser};
              end{scope}
              draw[red,very thick,-latex] plot[smooth,variable=x,domain=1440:1800,samples=360] ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});
              foreach X in {1440,1485,...,1800} { %LOOK HERE FOR THIRD SET OF ARROWS
              path let p1=($(0,{X*(2*3)/360},0) - ({-0.7071067812*sin(X)},{X*(2*3/360)},{0.5*sin(X)})$),
              n1={veclen(x1,y1)} in
              pgfextra{xdefmylen{n1}};
              ifdimmylen>1pt
              draw[-latex,help lines,red] (0,{X*(2*3)/360},0) -- ({-0.7071067812*sin(X)},{X*(2*3/360)},{0.5*sin(X)});
              fi}
              draw[-latex] (0,0,0) -- (0,32,0);
              draw[-latex] (0,0,-3) -- (0,0,3);
              draw[-latex] (3,0,0) -- (-3,0,0);
              begin{scope}[canvas is xz plane at y=1.5,xscale=-1]
              draw[red] (2,2) .. controls +(45:0.5) and +(-120:0.5).. (3,2.7);
              end{scope}
              node[scale=0.75,red] at (-3,4,3.7) {$bm{E}=A_{neswarrow}cosleft(2pi f t+phi_{neswarrow}right)ket{neswarrow}+0ket{nwsearrow}$};
              draw (0,12,-2.7) .. controls +(0:1) and +(-135:2).. (4,12,-3) node[below,scale=0.75] {Axis of Polarisation};
              begin{scope}[canvas is xz plane at y=16.5,xscale=-1]
              draw[red] (0,-2) .. controls +(-90:1) and +(0:0.5).. (-2,-4.4) node[left,scale=0.75] {$bm{E}=A_{neswarrow}cos(alpha)cosleft(2pi ft+phi_{neswarrow}right)ket{updownarrow} + 0ket{leftrightarrow}$};
              end{scope}
              end{tikzpicture}
              tdplotsetmaincoords{0}{0}
              begin{tikzpicture}[remember picture,overlay]
              begin{scope}[xshift=-5.8cm,yshift=4cm]
              draw (1,1) circle (1.1);
              draw[red,thick,latex-latex] (0.5,0.5) -- (1.5,1.5);
              draw[thick] (1,0.25) -- (1,1.75);
              draw[red,densely dashed,thick] (1.5,1.5) -- (1,1.5) (1,0.5) -- (0.5,0.5);
              node[left,scale=0.6,red,fill=white] at (1,1.5) {$A_{neswarrow}cos(alpha)$};
              draw[blue,pattern=north west lines,pattern color=blue] (1,1) -- +(45:0.25) arc (45:90:0.25) -- cycle;
              draw[blue] (1,1) +(67.5:0.2) ..controls +(45:0.3) and +(180:0.1).. (1.4,1) node[right] {$alpha$};
              node[below,scale=0.75] at (1,-0.1) {Polariser};
              end{scope}
              begin{scope}[xshift=-0.8cm,yshift=4.1cm,rotate=-60]
              draw (0,0) circle (1.1);
              draw[red,thick,latex-latex] (150:0.7071067812) -- (-30:0.7071067812);
              draw[thick] (0,-0.75) -- (0,0.75);
              draw[red,densely dashed,thick] (150:0.7071067812) -- (0,0.3535533906) (0,-0.3535533906) -- (-30:0.7071067812);
              draw[blue,pattern=north west lines,pattern color=blue] (0,0) -- (150:0.25) arc (150:90:0.25) -- cycle;
              draw[blue] (120:0.2) ..controls +(120:0.3) and +(-90:0.1).. (-0.3,0.6) node[above right=-0.07cm] {$theta$};
              node[below,scale=0.75] at (-30:1.1) {Analyser};
              end{scope}
              end{tikzpicture}
              end{document}


              enter image description here






              share|improve this answer




























                1














                Here is an alternative. Whether or not it is more tidy, I don't know. In principle, tips=on proper draw from p. 187 of the pgfmanual, which Paul Gaborit pointed out here, should do the trick. But I couldn't make this work, so I implemented a length check by hand. This might be more useful in situations in which it is not so easy to seen when the zero-length paths occur analytically.



                documentclass[10pt]{article}
                usepackage{tikz}
                usetikzlibrary{calc,patterns}
                usepackage{tikz-3dplot}
                usepackage[left=0.00cm, right=0.00cm]{geometry}
                usepackage{physics}
                usepackage{bm}
                usepackage{rotating}

                %Defining Diagonal Arrows:
                newcommand{neswarrow}{%
                begin{turn}{45}
                raisebox{-1ex}{$leftrightarrow$}
                end{turn}
                }
                newcommand{nwsearrow}{%
                begin{turn}{45}
                raisebox{0ex}{$updownarrow$}
                end{turn}
                }
                begin{document}
                tdplotsetmaincoords{75}{135}
                begin{tikzpicture}[tdplot_main_coords,scale=0.5]
                draw[red,very thick,-latex] plot[smooth,variable=x,domain=0:720,samples=360] (-{2*sin(x)},{x*(2*3/360)},{2*sin(x)});
                foreach X in {45,90,...,720} { %LOOK HERE FOR FIRST SET OF ARROWS
                path let p1=($(0,{X*(2*3/360},0) -
                (-{2*sin(X)},{X*(2*3/360)},{2*sin(X)})$),n1={veclen(x1,y1)} in
                pgfextra{xdefmylen{n1}};
                ifdimmylen>1pt
                draw[-latex,help lines,red] (0,{X*(2*3/360},0) -- (-{2*sin(X)},{X*(2*3/360)},{2*sin(X)});
                fi
                }
                draw[very thick,red,latex-latex,densely dashed] (-2,12,2) -- (2,12,-2);
                begin{scope}[canvas is xz plane at y=12,xscale=-1]
                draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
                node[anchor=south,transform shape,scale=1.5] at (0,3.5) {large Polariser};
                draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (-90:1.5) arc (-90:-135:1.5) -- cycle;
                draw[blue] (-112.5:1.3) ..controls +(-112.5:0.7) and +(180:0.7).. (0.7,-1.7) node[right] {$alpha$};
                end{scope}
                draw[very thick] (0,12,-3) -- (0,12,3);
                draw[red,very thick,-latex] plot[smooth,variable=x,domain=720:1440,samples=360] (0,{x*(2*3/360)},{2*sin(x)});
                foreach X in {720,765,...,1440} {%LOOK HERE FOR SECOND SET OF ARROWS
                path let p1=($(0,{X*(2*3)/360},0) - (0,{X*(2*3/360)},{2*sin(X)})$),
                n1={veclen(x1,y1)} in pgfextra{xdefmylen{n1}};
                ifdimmylen>1pt
                draw[-latex,help lines,red,] (0,{X*(2*3)/360},0) -- (0,{X*(2*3/360)},{2*sin(X)});
                fi}
                begin{scope}[canvas is xz plane at y=24,xscale=-1]
                draw[very thick,densely dashed,latex-latex,red] (-90:2) -- (90:2);
                end{scope}
                begin{scope}[canvas is xz plane at y=24,xscale=-1]
                draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
                draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (90:1) arc (90:30:1) -- cycle;
                node[blue] at (60:1.4) {$theta$};
                draw[very thick] (-150:3) -- (30:3);
                node[anchor=south,transform shape,scale=1.5] at (90:3.5) {large Analyser};
                end{scope}
                draw[red,very thick,-latex] plot[smooth,variable=x,domain=1440:1800,samples=360] ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});
                foreach X in {1440,1485,...,1800} { %LOOK HERE FOR THIRD SET OF ARROWS
                path let p1=($(0,{X*(2*3)/360},0) - ({-0.7071067812*sin(X)},{X*(2*3/360)},{0.5*sin(X)})$),
                n1={veclen(x1,y1)} in
                pgfextra{xdefmylen{n1}};
                ifdimmylen>1pt
                draw[-latex,help lines,red] (0,{X*(2*3)/360},0) -- ({-0.7071067812*sin(X)},{X*(2*3/360)},{0.5*sin(X)});
                fi}
                draw[-latex] (0,0,0) -- (0,32,0);
                draw[-latex] (0,0,-3) -- (0,0,3);
                draw[-latex] (3,0,0) -- (-3,0,0);
                begin{scope}[canvas is xz plane at y=1.5,xscale=-1]
                draw[red] (2,2) .. controls +(45:0.5) and +(-120:0.5).. (3,2.7);
                end{scope}
                node[scale=0.75,red] at (-3,4,3.7) {$bm{E}=A_{neswarrow}cosleft(2pi f t+phi_{neswarrow}right)ket{neswarrow}+0ket{nwsearrow}$};
                draw (0,12,-2.7) .. controls +(0:1) and +(-135:2).. (4,12,-3) node[below,scale=0.75] {Axis of Polarisation};
                begin{scope}[canvas is xz plane at y=16.5,xscale=-1]
                draw[red] (0,-2) .. controls +(-90:1) and +(0:0.5).. (-2,-4.4) node[left,scale=0.75] {$bm{E}=A_{neswarrow}cos(alpha)cosleft(2pi ft+phi_{neswarrow}right)ket{updownarrow} + 0ket{leftrightarrow}$};
                end{scope}
                end{tikzpicture}
                tdplotsetmaincoords{0}{0}
                begin{tikzpicture}[remember picture,overlay]
                begin{scope}[xshift=-5.8cm,yshift=4cm]
                draw (1,1) circle (1.1);
                draw[red,thick,latex-latex] (0.5,0.5) -- (1.5,1.5);
                draw[thick] (1,0.25) -- (1,1.75);
                draw[red,densely dashed,thick] (1.5,1.5) -- (1,1.5) (1,0.5) -- (0.5,0.5);
                node[left,scale=0.6,red,fill=white] at (1,1.5) {$A_{neswarrow}cos(alpha)$};
                draw[blue,pattern=north west lines,pattern color=blue] (1,1) -- +(45:0.25) arc (45:90:0.25) -- cycle;
                draw[blue] (1,1) +(67.5:0.2) ..controls +(45:0.3) and +(180:0.1).. (1.4,1) node[right] {$alpha$};
                node[below,scale=0.75] at (1,-0.1) {Polariser};
                end{scope}
                begin{scope}[xshift=-0.8cm,yshift=4.1cm,rotate=-60]
                draw (0,0) circle (1.1);
                draw[red,thick,latex-latex] (150:0.7071067812) -- (-30:0.7071067812);
                draw[thick] (0,-0.75) -- (0,0.75);
                draw[red,densely dashed,thick] (150:0.7071067812) -- (0,0.3535533906) (0,-0.3535533906) -- (-30:0.7071067812);
                draw[blue,pattern=north west lines,pattern color=blue] (0,0) -- (150:0.25) arc (150:90:0.25) -- cycle;
                draw[blue] (120:0.2) ..controls +(120:0.3) and +(-90:0.1).. (-0.3,0.6) node[above right=-0.07cm] {$theta$};
                node[below,scale=0.75] at (-30:1.1) {Analyser};
                end{scope}
                end{tikzpicture}
                end{document}


                enter image description here






                share|improve this answer


























                  1












                  1








                  1







                  Here is an alternative. Whether or not it is more tidy, I don't know. In principle, tips=on proper draw from p. 187 of the pgfmanual, which Paul Gaborit pointed out here, should do the trick. But I couldn't make this work, so I implemented a length check by hand. This might be more useful in situations in which it is not so easy to seen when the zero-length paths occur analytically.



                  documentclass[10pt]{article}
                  usepackage{tikz}
                  usetikzlibrary{calc,patterns}
                  usepackage{tikz-3dplot}
                  usepackage[left=0.00cm, right=0.00cm]{geometry}
                  usepackage{physics}
                  usepackage{bm}
                  usepackage{rotating}

                  %Defining Diagonal Arrows:
                  newcommand{neswarrow}{%
                  begin{turn}{45}
                  raisebox{-1ex}{$leftrightarrow$}
                  end{turn}
                  }
                  newcommand{nwsearrow}{%
                  begin{turn}{45}
                  raisebox{0ex}{$updownarrow$}
                  end{turn}
                  }
                  begin{document}
                  tdplotsetmaincoords{75}{135}
                  begin{tikzpicture}[tdplot_main_coords,scale=0.5]
                  draw[red,very thick,-latex] plot[smooth,variable=x,domain=0:720,samples=360] (-{2*sin(x)},{x*(2*3/360)},{2*sin(x)});
                  foreach X in {45,90,...,720} { %LOOK HERE FOR FIRST SET OF ARROWS
                  path let p1=($(0,{X*(2*3/360},0) -
                  (-{2*sin(X)},{X*(2*3/360)},{2*sin(X)})$),n1={veclen(x1,y1)} in
                  pgfextra{xdefmylen{n1}};
                  ifdimmylen>1pt
                  draw[-latex,help lines,red] (0,{X*(2*3/360},0) -- (-{2*sin(X)},{X*(2*3/360)},{2*sin(X)});
                  fi
                  }
                  draw[very thick,red,latex-latex,densely dashed] (-2,12,2) -- (2,12,-2);
                  begin{scope}[canvas is xz plane at y=12,xscale=-1]
                  draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
                  node[anchor=south,transform shape,scale=1.5] at (0,3.5) {large Polariser};
                  draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (-90:1.5) arc (-90:-135:1.5) -- cycle;
                  draw[blue] (-112.5:1.3) ..controls +(-112.5:0.7) and +(180:0.7).. (0.7,-1.7) node[right] {$alpha$};
                  end{scope}
                  draw[very thick] (0,12,-3) -- (0,12,3);
                  draw[red,very thick,-latex] plot[smooth,variable=x,domain=720:1440,samples=360] (0,{x*(2*3/360)},{2*sin(x)});
                  foreach X in {720,765,...,1440} {%LOOK HERE FOR SECOND SET OF ARROWS
                  path let p1=($(0,{X*(2*3)/360},0) - (0,{X*(2*3/360)},{2*sin(X)})$),
                  n1={veclen(x1,y1)} in pgfextra{xdefmylen{n1}};
                  ifdimmylen>1pt
                  draw[-latex,help lines,red,] (0,{X*(2*3)/360},0) -- (0,{X*(2*3/360)},{2*sin(X)});
                  fi}
                  begin{scope}[canvas is xz plane at y=24,xscale=-1]
                  draw[very thick,densely dashed,latex-latex,red] (-90:2) -- (90:2);
                  end{scope}
                  begin{scope}[canvas is xz plane at y=24,xscale=-1]
                  draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
                  draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (90:1) arc (90:30:1) -- cycle;
                  node[blue] at (60:1.4) {$theta$};
                  draw[very thick] (-150:3) -- (30:3);
                  node[anchor=south,transform shape,scale=1.5] at (90:3.5) {large Analyser};
                  end{scope}
                  draw[red,very thick,-latex] plot[smooth,variable=x,domain=1440:1800,samples=360] ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});
                  foreach X in {1440,1485,...,1800} { %LOOK HERE FOR THIRD SET OF ARROWS
                  path let p1=($(0,{X*(2*3)/360},0) - ({-0.7071067812*sin(X)},{X*(2*3/360)},{0.5*sin(X)})$),
                  n1={veclen(x1,y1)} in
                  pgfextra{xdefmylen{n1}};
                  ifdimmylen>1pt
                  draw[-latex,help lines,red] (0,{X*(2*3)/360},0) -- ({-0.7071067812*sin(X)},{X*(2*3/360)},{0.5*sin(X)});
                  fi}
                  draw[-latex] (0,0,0) -- (0,32,0);
                  draw[-latex] (0,0,-3) -- (0,0,3);
                  draw[-latex] (3,0,0) -- (-3,0,0);
                  begin{scope}[canvas is xz plane at y=1.5,xscale=-1]
                  draw[red] (2,2) .. controls +(45:0.5) and +(-120:0.5).. (3,2.7);
                  end{scope}
                  node[scale=0.75,red] at (-3,4,3.7) {$bm{E}=A_{neswarrow}cosleft(2pi f t+phi_{neswarrow}right)ket{neswarrow}+0ket{nwsearrow}$};
                  draw (0,12,-2.7) .. controls +(0:1) and +(-135:2).. (4,12,-3) node[below,scale=0.75] {Axis of Polarisation};
                  begin{scope}[canvas is xz plane at y=16.5,xscale=-1]
                  draw[red] (0,-2) .. controls +(-90:1) and +(0:0.5).. (-2,-4.4) node[left,scale=0.75] {$bm{E}=A_{neswarrow}cos(alpha)cosleft(2pi ft+phi_{neswarrow}right)ket{updownarrow} + 0ket{leftrightarrow}$};
                  end{scope}
                  end{tikzpicture}
                  tdplotsetmaincoords{0}{0}
                  begin{tikzpicture}[remember picture,overlay]
                  begin{scope}[xshift=-5.8cm,yshift=4cm]
                  draw (1,1) circle (1.1);
                  draw[red,thick,latex-latex] (0.5,0.5) -- (1.5,1.5);
                  draw[thick] (1,0.25) -- (1,1.75);
                  draw[red,densely dashed,thick] (1.5,1.5) -- (1,1.5) (1,0.5) -- (0.5,0.5);
                  node[left,scale=0.6,red,fill=white] at (1,1.5) {$A_{neswarrow}cos(alpha)$};
                  draw[blue,pattern=north west lines,pattern color=blue] (1,1) -- +(45:0.25) arc (45:90:0.25) -- cycle;
                  draw[blue] (1,1) +(67.5:0.2) ..controls +(45:0.3) and +(180:0.1).. (1.4,1) node[right] {$alpha$};
                  node[below,scale=0.75] at (1,-0.1) {Polariser};
                  end{scope}
                  begin{scope}[xshift=-0.8cm,yshift=4.1cm,rotate=-60]
                  draw (0,0) circle (1.1);
                  draw[red,thick,latex-latex] (150:0.7071067812) -- (-30:0.7071067812);
                  draw[thick] (0,-0.75) -- (0,0.75);
                  draw[red,densely dashed,thick] (150:0.7071067812) -- (0,0.3535533906) (0,-0.3535533906) -- (-30:0.7071067812);
                  draw[blue,pattern=north west lines,pattern color=blue] (0,0) -- (150:0.25) arc (150:90:0.25) -- cycle;
                  draw[blue] (120:0.2) ..controls +(120:0.3) and +(-90:0.1).. (-0.3,0.6) node[above right=-0.07cm] {$theta$};
                  node[below,scale=0.75] at (-30:1.1) {Analyser};
                  end{scope}
                  end{tikzpicture}
                  end{document}


                  enter image description here






                  share|improve this answer













                  Here is an alternative. Whether or not it is more tidy, I don't know. In principle, tips=on proper draw from p. 187 of the pgfmanual, which Paul Gaborit pointed out here, should do the trick. But I couldn't make this work, so I implemented a length check by hand. This might be more useful in situations in which it is not so easy to seen when the zero-length paths occur analytically.



                  documentclass[10pt]{article}
                  usepackage{tikz}
                  usetikzlibrary{calc,patterns}
                  usepackage{tikz-3dplot}
                  usepackage[left=0.00cm, right=0.00cm]{geometry}
                  usepackage{physics}
                  usepackage{bm}
                  usepackage{rotating}

                  %Defining Diagonal Arrows:
                  newcommand{neswarrow}{%
                  begin{turn}{45}
                  raisebox{-1ex}{$leftrightarrow$}
                  end{turn}
                  }
                  newcommand{nwsearrow}{%
                  begin{turn}{45}
                  raisebox{0ex}{$updownarrow$}
                  end{turn}
                  }
                  begin{document}
                  tdplotsetmaincoords{75}{135}
                  begin{tikzpicture}[tdplot_main_coords,scale=0.5]
                  draw[red,very thick,-latex] plot[smooth,variable=x,domain=0:720,samples=360] (-{2*sin(x)},{x*(2*3/360)},{2*sin(x)});
                  foreach X in {45,90,...,720} { %LOOK HERE FOR FIRST SET OF ARROWS
                  path let p1=($(0,{X*(2*3/360},0) -
                  (-{2*sin(X)},{X*(2*3/360)},{2*sin(X)})$),n1={veclen(x1,y1)} in
                  pgfextra{xdefmylen{n1}};
                  ifdimmylen>1pt
                  draw[-latex,help lines,red] (0,{X*(2*3/360},0) -- (-{2*sin(X)},{X*(2*3/360)},{2*sin(X)});
                  fi
                  }
                  draw[very thick,red,latex-latex,densely dashed] (-2,12,2) -- (2,12,-2);
                  begin{scope}[canvas is xz plane at y=12,xscale=-1]
                  draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
                  node[anchor=south,transform shape,scale=1.5] at (0,3.5) {large Polariser};
                  draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (-90:1.5) arc (-90:-135:1.5) -- cycle;
                  draw[blue] (-112.5:1.3) ..controls +(-112.5:0.7) and +(180:0.7).. (0.7,-1.7) node[right] {$alpha$};
                  end{scope}
                  draw[very thick] (0,12,-3) -- (0,12,3);
                  draw[red,very thick,-latex] plot[smooth,variable=x,domain=720:1440,samples=360] (0,{x*(2*3/360)},{2*sin(x)});
                  foreach X in {720,765,...,1440} {%LOOK HERE FOR SECOND SET OF ARROWS
                  path let p1=($(0,{X*(2*3)/360},0) - (0,{X*(2*3/360)},{2*sin(X)})$),
                  n1={veclen(x1,y1)} in pgfextra{xdefmylen{n1}};
                  ifdimmylen>1pt
                  draw[-latex,help lines,red,] (0,{X*(2*3)/360},0) -- (0,{X*(2*3/360)},{2*sin(X)});
                  fi}
                  begin{scope}[canvas is xz plane at y=24,xscale=-1]
                  draw[very thick,densely dashed,latex-latex,red] (-90:2) -- (90:2);
                  end{scope}
                  begin{scope}[canvas is xz plane at y=24,xscale=-1]
                  draw[very thick,fill=white,fill opacity=0.6] (0,0) circle (3.5);
                  draw[blue,pattern=north west lines, pattern color=blue] (0,0) -- (90:1) arc (90:30:1) -- cycle;
                  node[blue] at (60:1.4) {$theta$};
                  draw[very thick] (-150:3) -- (30:3);
                  node[anchor=south,transform shape,scale=1.5] at (90:3.5) {large Analyser};
                  end{scope}
                  draw[red,very thick,-latex] plot[smooth,variable=x,domain=1440:1800,samples=360] ({-0.7071067812*sin(x)},{x*(2*3/360)},{0.5*sin(x)});
                  foreach X in {1440,1485,...,1800} { %LOOK HERE FOR THIRD SET OF ARROWS
                  path let p1=($(0,{X*(2*3)/360},0) - ({-0.7071067812*sin(X)},{X*(2*3/360)},{0.5*sin(X)})$),
                  n1={veclen(x1,y1)} in
                  pgfextra{xdefmylen{n1}};
                  ifdimmylen>1pt
                  draw[-latex,help lines,red] (0,{X*(2*3)/360},0) -- ({-0.7071067812*sin(X)},{X*(2*3/360)},{0.5*sin(X)});
                  fi}
                  draw[-latex] (0,0,0) -- (0,32,0);
                  draw[-latex] (0,0,-3) -- (0,0,3);
                  draw[-latex] (3,0,0) -- (-3,0,0);
                  begin{scope}[canvas is xz plane at y=1.5,xscale=-1]
                  draw[red] (2,2) .. controls +(45:0.5) and +(-120:0.5).. (3,2.7);
                  end{scope}
                  node[scale=0.75,red] at (-3,4,3.7) {$bm{E}=A_{neswarrow}cosleft(2pi f t+phi_{neswarrow}right)ket{neswarrow}+0ket{nwsearrow}$};
                  draw (0,12,-2.7) .. controls +(0:1) and +(-135:2).. (4,12,-3) node[below,scale=0.75] {Axis of Polarisation};
                  begin{scope}[canvas is xz plane at y=16.5,xscale=-1]
                  draw[red] (0,-2) .. controls +(-90:1) and +(0:0.5).. (-2,-4.4) node[left,scale=0.75] {$bm{E}=A_{neswarrow}cos(alpha)cosleft(2pi ft+phi_{neswarrow}right)ket{updownarrow} + 0ket{leftrightarrow}$};
                  end{scope}
                  end{tikzpicture}
                  tdplotsetmaincoords{0}{0}
                  begin{tikzpicture}[remember picture,overlay]
                  begin{scope}[xshift=-5.8cm,yshift=4cm]
                  draw (1,1) circle (1.1);
                  draw[red,thick,latex-latex] (0.5,0.5) -- (1.5,1.5);
                  draw[thick] (1,0.25) -- (1,1.75);
                  draw[red,densely dashed,thick] (1.5,1.5) -- (1,1.5) (1,0.5) -- (0.5,0.5);
                  node[left,scale=0.6,red,fill=white] at (1,1.5) {$A_{neswarrow}cos(alpha)$};
                  draw[blue,pattern=north west lines,pattern color=blue] (1,1) -- +(45:0.25) arc (45:90:0.25) -- cycle;
                  draw[blue] (1,1) +(67.5:0.2) ..controls +(45:0.3) and +(180:0.1).. (1.4,1) node[right] {$alpha$};
                  node[below,scale=0.75] at (1,-0.1) {Polariser};
                  end{scope}
                  begin{scope}[xshift=-0.8cm,yshift=4.1cm,rotate=-60]
                  draw (0,0) circle (1.1);
                  draw[red,thick,latex-latex] (150:0.7071067812) -- (-30:0.7071067812);
                  draw[thick] (0,-0.75) -- (0,0.75);
                  draw[red,densely dashed,thick] (150:0.7071067812) -- (0,0.3535533906) (0,-0.3535533906) -- (-30:0.7071067812);
                  draw[blue,pattern=north west lines,pattern color=blue] (0,0) -- (150:0.25) arc (150:90:0.25) -- cycle;
                  draw[blue] (120:0.2) ..controls +(120:0.3) and +(-90:0.1).. (-0.3,0.6) node[above right=-0.07cm] {$theta$};
                  node[below,scale=0.75] at (-30:1.1) {Analyser};
                  end{scope}
                  end{tikzpicture}
                  end{document}


                  enter image description here







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 16 mins ago









                  marmotmarmot

                  90.8k4104195




                  90.8k4104195






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f469835%2fhow-to-change-foreach-to-omit-a-certain-multiple%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      What other Star Trek series did the main TNG cast show up in?

                      Berlina muro

                      Berlina aerponto