How thick does lunar regolith ever get? Has the thickness been measured and mapped by satellite?












3












$begingroup$


Discussion in comments below the question Couldn't we just clear away the Moon Dust? have lead me to wonder if




  1. thickness of the lunar regolith is fairly well mapped by some combination of high temporal resolution radar and thermal inertia measurements by satellite.

  2. If so, how thick does it get?


My feeling is that it never gets more than say 20 cm and is usually a lot thinner, but I have no idea.










share|improve this question









$endgroup$








  • 1




    $begingroup$
    My first google came up with: "The thickness of the regolith varies from about 5 m on mare surfaces to about 10 m on highland surfaces." - Source: curator.jsc.nasa.gov/lunar/letss/regolith.pdf
    $endgroup$
    – Christoph
    19 hours ago












  • $begingroup$
    @Christoph It would be excellent if you considered posting an answer drawing upon that presentation! There is a lot of information about the various methods used to deduce density versus depth, as well as the mechanisms that can continue to produce small particles beyond the meteor impacts we've all heard about. Thanks!
    $endgroup$
    – uhoh
    18 hours ago










  • $begingroup$
    @Christoph I recognize some of those plots as plots in this answer.
    $endgroup$
    – uhoh
    18 hours ago
















3












$begingroup$


Discussion in comments below the question Couldn't we just clear away the Moon Dust? have lead me to wonder if




  1. thickness of the lunar regolith is fairly well mapped by some combination of high temporal resolution radar and thermal inertia measurements by satellite.

  2. If so, how thick does it get?


My feeling is that it never gets more than say 20 cm and is usually a lot thinner, but I have no idea.










share|improve this question









$endgroup$








  • 1




    $begingroup$
    My first google came up with: "The thickness of the regolith varies from about 5 m on mare surfaces to about 10 m on highland surfaces." - Source: curator.jsc.nasa.gov/lunar/letss/regolith.pdf
    $endgroup$
    – Christoph
    19 hours ago












  • $begingroup$
    @Christoph It would be excellent if you considered posting an answer drawing upon that presentation! There is a lot of information about the various methods used to deduce density versus depth, as well as the mechanisms that can continue to produce small particles beyond the meteor impacts we've all heard about. Thanks!
    $endgroup$
    – uhoh
    18 hours ago










  • $begingroup$
    @Christoph I recognize some of those plots as plots in this answer.
    $endgroup$
    – uhoh
    18 hours ago














3












3








3





$begingroup$


Discussion in comments below the question Couldn't we just clear away the Moon Dust? have lead me to wonder if




  1. thickness of the lunar regolith is fairly well mapped by some combination of high temporal resolution radar and thermal inertia measurements by satellite.

  2. If so, how thick does it get?


My feeling is that it never gets more than say 20 cm and is usually a lot thinner, but I have no idea.










share|improve this question









$endgroup$




Discussion in comments below the question Couldn't we just clear away the Moon Dust? have lead me to wonder if




  1. thickness of the lunar regolith is fairly well mapped by some combination of high temporal resolution radar and thermal inertia measurements by satellite.

  2. If so, how thick does it get?


My feeling is that it never gets more than say 20 cm and is usually a lot thinner, but I have no idea.







the-moon regolith






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked 20 hours ago









uhohuhoh

40.2k18149507




40.2k18149507








  • 1




    $begingroup$
    My first google came up with: "The thickness of the regolith varies from about 5 m on mare surfaces to about 10 m on highland surfaces." - Source: curator.jsc.nasa.gov/lunar/letss/regolith.pdf
    $endgroup$
    – Christoph
    19 hours ago












  • $begingroup$
    @Christoph It would be excellent if you considered posting an answer drawing upon that presentation! There is a lot of information about the various methods used to deduce density versus depth, as well as the mechanisms that can continue to produce small particles beyond the meteor impacts we've all heard about. Thanks!
    $endgroup$
    – uhoh
    18 hours ago










  • $begingroup$
    @Christoph I recognize some of those plots as plots in this answer.
    $endgroup$
    – uhoh
    18 hours ago














  • 1




    $begingroup$
    My first google came up with: "The thickness of the regolith varies from about 5 m on mare surfaces to about 10 m on highland surfaces." - Source: curator.jsc.nasa.gov/lunar/letss/regolith.pdf
    $endgroup$
    – Christoph
    19 hours ago












  • $begingroup$
    @Christoph It would be excellent if you considered posting an answer drawing upon that presentation! There is a lot of information about the various methods used to deduce density versus depth, as well as the mechanisms that can continue to produce small particles beyond the meteor impacts we've all heard about. Thanks!
    $endgroup$
    – uhoh
    18 hours ago










  • $begingroup$
    @Christoph I recognize some of those plots as plots in this answer.
    $endgroup$
    – uhoh
    18 hours ago








1




1




$begingroup$
My first google came up with: "The thickness of the regolith varies from about 5 m on mare surfaces to about 10 m on highland surfaces." - Source: curator.jsc.nasa.gov/lunar/letss/regolith.pdf
$endgroup$
– Christoph
19 hours ago






$begingroup$
My first google came up with: "The thickness of the regolith varies from about 5 m on mare surfaces to about 10 m on highland surfaces." - Source: curator.jsc.nasa.gov/lunar/letss/regolith.pdf
$endgroup$
– Christoph
19 hours ago














$begingroup$
@Christoph It would be excellent if you considered posting an answer drawing upon that presentation! There is a lot of information about the various methods used to deduce density versus depth, as well as the mechanisms that can continue to produce small particles beyond the meteor impacts we've all heard about. Thanks!
$endgroup$
– uhoh
18 hours ago




$begingroup$
@Christoph It would be excellent if you considered posting an answer drawing upon that presentation! There is a lot of information about the various methods used to deduce density versus depth, as well as the mechanisms that can continue to produce small particles beyond the meteor impacts we've all heard about. Thanks!
$endgroup$
– uhoh
18 hours ago












$begingroup$
@Christoph I recognize some of those plots as plots in this answer.
$endgroup$
– uhoh
18 hours ago




$begingroup$
@Christoph I recognize some of those plots as plots in this answer.
$endgroup$
– uhoh
18 hours ago










2 Answers
2






active

oldest

votes


















3












$begingroup$

First, we have to define 'regolith'. NASA uses the term for all unconsolidated debris, including large boulders:




The lunar surface is covered by a layer of unconsolidated debris called the lunar regolith (fig. 53). The thickness of the regolith varies from about 5 m on mare surfaces to about 10 m on highland surfaces.




Lumps smaller than 1 cm are called "lunar soil".



The stuff you're probably after is the fraction fine enough to be called "dust".




Lunar dust generally connotes even finer materials than lunar soil. There is no official definition of what size fraction constitutes "dust"; some place the cutoff at less than 50 μm in diameter, while others at less than 10 μm.




All of these categories are mixed together, with smaller particles filling the space between larger particles.



At the surface, you tend to get a layer of dust.




Since the Moon lacks any sort of an atmosphere, the upper few millimeters of the regolith is exposed to the bombardment of micrometeorites and to solar wind irradiation. The extensive bombardment by micrometeorites, which continues today, breaks up soil particles and melts portions of the soil.




Lunar dust builds up at a rate of 1 mm/1000 y. Impacts can break up rock, but can also consolidate particles by melting:




The impact of micrometeoroids, sometimes travelling faster than 96,000 km/h (60,000 mph), generates enough heat to melt or partially vaporize dust particles. This melting and refreezing welds particles together into glassy, jagged-edged agglutinates,[12] reminiscent of tektites found on Earth.




We have some data on regolith depth, but it's incomplete. The best data is the samples taken by the Apollo missions, but those are very localized. Whole-surface data relies mostly on photos and various estimation techniques.



enter image description here



This is a Ground Penetrating Radar map made by Chang'e 3's rover Yutu.



Radar measurements from Earth can give an indication of surface grain size:



enter image description here






share|improve this answer











$endgroup$









  • 1




    $begingroup$
    This is interesting! I had assumed the Moon's surface was binary; solid rock with ~10cm of power on top. Perhaps an occasional random boulder here and there. I didn't realize there was thought to be such a gradual transition over such an extended range of depths! I'm also surprised that existing surface-penetrating radar data is only from Earth, and not from any spacecraft orbiting the Moon!
    $endgroup$
    – uhoh
    18 hours ago












  • $begingroup$
    "This is a Ground Penetrating Radar map from Yutu" What's Yutu?
    $endgroup$
    – Steve Linton
    17 hours ago








  • 1




    $begingroup$
    The rover part of the Chinese Chang'e 3 lunar lander mission
    $endgroup$
    – Hobbes
    17 hours ago










  • $begingroup$
    Only Yutu, or Yutu-2 too?
    $endgroup$
    – uhoh
    17 hours ago



















1












$begingroup$

Lunar regolith is approximately 1.35 $g/cm^3$ for the top 30 cm, and it is approximately 1.85 $g/cm^3$ at a depth of 60 cm. It is as thin as 5 cm at some places.
It can cause lung cancer if ingested, and is similar to asbestos.






share|improve this answer










New contributor




Matthew is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$









  • 3




    $begingroup$
    Hi @Matthew and Welcome to Space! When writing answers in Stack Exchange it's important to include links or citations to the sources of information that you quote. It' helps to verify the accuracy and makes your answer more informative to future readers.
    $endgroup$
    – uhoh
    19 hours ago












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "508"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fspace.stackexchange.com%2fquestions%2f35312%2fhow-thick-does-lunar-regolith-ever-get-has-the-thickness-been-measured-and-mapp%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

First, we have to define 'regolith'. NASA uses the term for all unconsolidated debris, including large boulders:




The lunar surface is covered by a layer of unconsolidated debris called the lunar regolith (fig. 53). The thickness of the regolith varies from about 5 m on mare surfaces to about 10 m on highland surfaces.




Lumps smaller than 1 cm are called "lunar soil".



The stuff you're probably after is the fraction fine enough to be called "dust".




Lunar dust generally connotes even finer materials than lunar soil. There is no official definition of what size fraction constitutes "dust"; some place the cutoff at less than 50 μm in diameter, while others at less than 10 μm.




All of these categories are mixed together, with smaller particles filling the space between larger particles.



At the surface, you tend to get a layer of dust.




Since the Moon lacks any sort of an atmosphere, the upper few millimeters of the regolith is exposed to the bombardment of micrometeorites and to solar wind irradiation. The extensive bombardment by micrometeorites, which continues today, breaks up soil particles and melts portions of the soil.




Lunar dust builds up at a rate of 1 mm/1000 y. Impacts can break up rock, but can also consolidate particles by melting:




The impact of micrometeoroids, sometimes travelling faster than 96,000 km/h (60,000 mph), generates enough heat to melt or partially vaporize dust particles. This melting and refreezing welds particles together into glassy, jagged-edged agglutinates,[12] reminiscent of tektites found on Earth.




We have some data on regolith depth, but it's incomplete. The best data is the samples taken by the Apollo missions, but those are very localized. Whole-surface data relies mostly on photos and various estimation techniques.



enter image description here



This is a Ground Penetrating Radar map made by Chang'e 3's rover Yutu.



Radar measurements from Earth can give an indication of surface grain size:



enter image description here






share|improve this answer











$endgroup$









  • 1




    $begingroup$
    This is interesting! I had assumed the Moon's surface was binary; solid rock with ~10cm of power on top. Perhaps an occasional random boulder here and there. I didn't realize there was thought to be such a gradual transition over such an extended range of depths! I'm also surprised that existing surface-penetrating radar data is only from Earth, and not from any spacecraft orbiting the Moon!
    $endgroup$
    – uhoh
    18 hours ago












  • $begingroup$
    "This is a Ground Penetrating Radar map from Yutu" What's Yutu?
    $endgroup$
    – Steve Linton
    17 hours ago








  • 1




    $begingroup$
    The rover part of the Chinese Chang'e 3 lunar lander mission
    $endgroup$
    – Hobbes
    17 hours ago










  • $begingroup$
    Only Yutu, or Yutu-2 too?
    $endgroup$
    – uhoh
    17 hours ago
















3












$begingroup$

First, we have to define 'regolith'. NASA uses the term for all unconsolidated debris, including large boulders:




The lunar surface is covered by a layer of unconsolidated debris called the lunar regolith (fig. 53). The thickness of the regolith varies from about 5 m on mare surfaces to about 10 m on highland surfaces.




Lumps smaller than 1 cm are called "lunar soil".



The stuff you're probably after is the fraction fine enough to be called "dust".




Lunar dust generally connotes even finer materials than lunar soil. There is no official definition of what size fraction constitutes "dust"; some place the cutoff at less than 50 μm in diameter, while others at less than 10 μm.




All of these categories are mixed together, with smaller particles filling the space between larger particles.



At the surface, you tend to get a layer of dust.




Since the Moon lacks any sort of an atmosphere, the upper few millimeters of the regolith is exposed to the bombardment of micrometeorites and to solar wind irradiation. The extensive bombardment by micrometeorites, which continues today, breaks up soil particles and melts portions of the soil.




Lunar dust builds up at a rate of 1 mm/1000 y. Impacts can break up rock, but can also consolidate particles by melting:




The impact of micrometeoroids, sometimes travelling faster than 96,000 km/h (60,000 mph), generates enough heat to melt or partially vaporize dust particles. This melting and refreezing welds particles together into glassy, jagged-edged agglutinates,[12] reminiscent of tektites found on Earth.




We have some data on regolith depth, but it's incomplete. The best data is the samples taken by the Apollo missions, but those are very localized. Whole-surface data relies mostly on photos and various estimation techniques.



enter image description here



This is a Ground Penetrating Radar map made by Chang'e 3's rover Yutu.



Radar measurements from Earth can give an indication of surface grain size:



enter image description here






share|improve this answer











$endgroup$









  • 1




    $begingroup$
    This is interesting! I had assumed the Moon's surface was binary; solid rock with ~10cm of power on top. Perhaps an occasional random boulder here and there. I didn't realize there was thought to be such a gradual transition over such an extended range of depths! I'm also surprised that existing surface-penetrating radar data is only from Earth, and not from any spacecraft orbiting the Moon!
    $endgroup$
    – uhoh
    18 hours ago












  • $begingroup$
    "This is a Ground Penetrating Radar map from Yutu" What's Yutu?
    $endgroup$
    – Steve Linton
    17 hours ago








  • 1




    $begingroup$
    The rover part of the Chinese Chang'e 3 lunar lander mission
    $endgroup$
    – Hobbes
    17 hours ago










  • $begingroup$
    Only Yutu, or Yutu-2 too?
    $endgroup$
    – uhoh
    17 hours ago














3












3








3





$begingroup$

First, we have to define 'regolith'. NASA uses the term for all unconsolidated debris, including large boulders:




The lunar surface is covered by a layer of unconsolidated debris called the lunar regolith (fig. 53). The thickness of the regolith varies from about 5 m on mare surfaces to about 10 m on highland surfaces.




Lumps smaller than 1 cm are called "lunar soil".



The stuff you're probably after is the fraction fine enough to be called "dust".




Lunar dust generally connotes even finer materials than lunar soil. There is no official definition of what size fraction constitutes "dust"; some place the cutoff at less than 50 μm in diameter, while others at less than 10 μm.




All of these categories are mixed together, with smaller particles filling the space between larger particles.



At the surface, you tend to get a layer of dust.




Since the Moon lacks any sort of an atmosphere, the upper few millimeters of the regolith is exposed to the bombardment of micrometeorites and to solar wind irradiation. The extensive bombardment by micrometeorites, which continues today, breaks up soil particles and melts portions of the soil.




Lunar dust builds up at a rate of 1 mm/1000 y. Impacts can break up rock, but can also consolidate particles by melting:




The impact of micrometeoroids, sometimes travelling faster than 96,000 km/h (60,000 mph), generates enough heat to melt or partially vaporize dust particles. This melting and refreezing welds particles together into glassy, jagged-edged agglutinates,[12] reminiscent of tektites found on Earth.




We have some data on regolith depth, but it's incomplete. The best data is the samples taken by the Apollo missions, but those are very localized. Whole-surface data relies mostly on photos and various estimation techniques.



enter image description here



This is a Ground Penetrating Radar map made by Chang'e 3's rover Yutu.



Radar measurements from Earth can give an indication of surface grain size:



enter image description here






share|improve this answer











$endgroup$



First, we have to define 'regolith'. NASA uses the term for all unconsolidated debris, including large boulders:




The lunar surface is covered by a layer of unconsolidated debris called the lunar regolith (fig. 53). The thickness of the regolith varies from about 5 m on mare surfaces to about 10 m on highland surfaces.




Lumps smaller than 1 cm are called "lunar soil".



The stuff you're probably after is the fraction fine enough to be called "dust".




Lunar dust generally connotes even finer materials than lunar soil. There is no official definition of what size fraction constitutes "dust"; some place the cutoff at less than 50 μm in diameter, while others at less than 10 μm.




All of these categories are mixed together, with smaller particles filling the space between larger particles.



At the surface, you tend to get a layer of dust.




Since the Moon lacks any sort of an atmosphere, the upper few millimeters of the regolith is exposed to the bombardment of micrometeorites and to solar wind irradiation. The extensive bombardment by micrometeorites, which continues today, breaks up soil particles and melts portions of the soil.




Lunar dust builds up at a rate of 1 mm/1000 y. Impacts can break up rock, but can also consolidate particles by melting:




The impact of micrometeoroids, sometimes travelling faster than 96,000 km/h (60,000 mph), generates enough heat to melt or partially vaporize dust particles. This melting and refreezing welds particles together into glassy, jagged-edged agglutinates,[12] reminiscent of tektites found on Earth.




We have some data on regolith depth, but it's incomplete. The best data is the samples taken by the Apollo missions, but those are very localized. Whole-surface data relies mostly on photos and various estimation techniques.



enter image description here



This is a Ground Penetrating Radar map made by Chang'e 3's rover Yutu.



Radar measurements from Earth can give an indication of surface grain size:



enter image description here







share|improve this answer














share|improve this answer



share|improve this answer








edited 17 hours ago

























answered 18 hours ago









HobbesHobbes

95.7k2272426




95.7k2272426








  • 1




    $begingroup$
    This is interesting! I had assumed the Moon's surface was binary; solid rock with ~10cm of power on top. Perhaps an occasional random boulder here and there. I didn't realize there was thought to be such a gradual transition over such an extended range of depths! I'm also surprised that existing surface-penetrating radar data is only from Earth, and not from any spacecraft orbiting the Moon!
    $endgroup$
    – uhoh
    18 hours ago












  • $begingroup$
    "This is a Ground Penetrating Radar map from Yutu" What's Yutu?
    $endgroup$
    – Steve Linton
    17 hours ago








  • 1




    $begingroup$
    The rover part of the Chinese Chang'e 3 lunar lander mission
    $endgroup$
    – Hobbes
    17 hours ago










  • $begingroup$
    Only Yutu, or Yutu-2 too?
    $endgroup$
    – uhoh
    17 hours ago














  • 1




    $begingroup$
    This is interesting! I had assumed the Moon's surface was binary; solid rock with ~10cm of power on top. Perhaps an occasional random boulder here and there. I didn't realize there was thought to be such a gradual transition over such an extended range of depths! I'm also surprised that existing surface-penetrating radar data is only from Earth, and not from any spacecraft orbiting the Moon!
    $endgroup$
    – uhoh
    18 hours ago












  • $begingroup$
    "This is a Ground Penetrating Radar map from Yutu" What's Yutu?
    $endgroup$
    – Steve Linton
    17 hours ago








  • 1




    $begingroup$
    The rover part of the Chinese Chang'e 3 lunar lander mission
    $endgroup$
    – Hobbes
    17 hours ago










  • $begingroup$
    Only Yutu, or Yutu-2 too?
    $endgroup$
    – uhoh
    17 hours ago








1




1




$begingroup$
This is interesting! I had assumed the Moon's surface was binary; solid rock with ~10cm of power on top. Perhaps an occasional random boulder here and there. I didn't realize there was thought to be such a gradual transition over such an extended range of depths! I'm also surprised that existing surface-penetrating radar data is only from Earth, and not from any spacecraft orbiting the Moon!
$endgroup$
– uhoh
18 hours ago






$begingroup$
This is interesting! I had assumed the Moon's surface was binary; solid rock with ~10cm of power on top. Perhaps an occasional random boulder here and there. I didn't realize there was thought to be such a gradual transition over such an extended range of depths! I'm also surprised that existing surface-penetrating radar data is only from Earth, and not from any spacecraft orbiting the Moon!
$endgroup$
– uhoh
18 hours ago














$begingroup$
"This is a Ground Penetrating Radar map from Yutu" What's Yutu?
$endgroup$
– Steve Linton
17 hours ago






$begingroup$
"This is a Ground Penetrating Radar map from Yutu" What's Yutu?
$endgroup$
– Steve Linton
17 hours ago






1




1




$begingroup$
The rover part of the Chinese Chang'e 3 lunar lander mission
$endgroup$
– Hobbes
17 hours ago




$begingroup$
The rover part of the Chinese Chang'e 3 lunar lander mission
$endgroup$
– Hobbes
17 hours ago












$begingroup$
Only Yutu, or Yutu-2 too?
$endgroup$
– uhoh
17 hours ago




$begingroup$
Only Yutu, or Yutu-2 too?
$endgroup$
– uhoh
17 hours ago











1












$begingroup$

Lunar regolith is approximately 1.35 $g/cm^3$ for the top 30 cm, and it is approximately 1.85 $g/cm^3$ at a depth of 60 cm. It is as thin as 5 cm at some places.
It can cause lung cancer if ingested, and is similar to asbestos.






share|improve this answer










New contributor




Matthew is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$









  • 3




    $begingroup$
    Hi @Matthew and Welcome to Space! When writing answers in Stack Exchange it's important to include links or citations to the sources of information that you quote. It' helps to verify the accuracy and makes your answer more informative to future readers.
    $endgroup$
    – uhoh
    19 hours ago
















1












$begingroup$

Lunar regolith is approximately 1.35 $g/cm^3$ for the top 30 cm, and it is approximately 1.85 $g/cm^3$ at a depth of 60 cm. It is as thin as 5 cm at some places.
It can cause lung cancer if ingested, and is similar to asbestos.






share|improve this answer










New contributor




Matthew is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$









  • 3




    $begingroup$
    Hi @Matthew and Welcome to Space! When writing answers in Stack Exchange it's important to include links or citations to the sources of information that you quote. It' helps to verify the accuracy and makes your answer more informative to future readers.
    $endgroup$
    – uhoh
    19 hours ago














1












1








1





$begingroup$

Lunar regolith is approximately 1.35 $g/cm^3$ for the top 30 cm, and it is approximately 1.85 $g/cm^3$ at a depth of 60 cm. It is as thin as 5 cm at some places.
It can cause lung cancer if ingested, and is similar to asbestos.






share|improve this answer










New contributor




Matthew is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$



Lunar regolith is approximately 1.35 $g/cm^3$ for the top 30 cm, and it is approximately 1.85 $g/cm^3$ at a depth of 60 cm. It is as thin as 5 cm at some places.
It can cause lung cancer if ingested, and is similar to asbestos.







share|improve this answer










New contributor




Matthew is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this answer



share|improve this answer








edited 17 hours ago









Uwe

11.5k23157




11.5k23157






New contributor




Matthew is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









answered 19 hours ago









MatthewMatthew

111




111




New contributor




Matthew is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Matthew is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Matthew is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 3




    $begingroup$
    Hi @Matthew and Welcome to Space! When writing answers in Stack Exchange it's important to include links or citations to the sources of information that you quote. It' helps to verify the accuracy and makes your answer more informative to future readers.
    $endgroup$
    – uhoh
    19 hours ago














  • 3




    $begingroup$
    Hi @Matthew and Welcome to Space! When writing answers in Stack Exchange it's important to include links or citations to the sources of information that you quote. It' helps to verify the accuracy and makes your answer more informative to future readers.
    $endgroup$
    – uhoh
    19 hours ago








3




3




$begingroup$
Hi @Matthew and Welcome to Space! When writing answers in Stack Exchange it's important to include links or citations to the sources of information that you quote. It' helps to verify the accuracy and makes your answer more informative to future readers.
$endgroup$
– uhoh
19 hours ago




$begingroup$
Hi @Matthew and Welcome to Space! When writing answers in Stack Exchange it's important to include links or citations to the sources of information that you quote. It' helps to verify the accuracy and makes your answer more informative to future readers.
$endgroup$
– uhoh
19 hours ago


















draft saved

draft discarded




















































Thanks for contributing an answer to Space Exploration Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fspace.stackexchange.com%2fquestions%2f35312%2fhow-thick-does-lunar-regolith-ever-get-has-the-thickness-been-measured-and-mapp%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

What other Star Trek series did the main TNG cast show up in?

Berlina muro

Berlina aerponto