Why would you need an op amp for reference voltage when the voltage divider does the trick?












7














Is there a reason this schematic uses an op amp (AD8031) for the reference voltage of the op amp (AD8544) filter when the voltage divider already brings down the voltage anyways? Can the AD8031 op amp be removed? Also, to save power, can the voltage divider be replaced with a buck converter?



enter image description here










share|improve this question





























    7














    Is there a reason this schematic uses an op amp (AD8031) for the reference voltage of the op amp (AD8544) filter when the voltage divider already brings down the voltage anyways? Can the AD8031 op amp be removed? Also, to save power, can the voltage divider be replaced with a buck converter?



    enter image description here










    share|improve this question



























      7












      7








      7


      2





      Is there a reason this schematic uses an op amp (AD8031) for the reference voltage of the op amp (AD8544) filter when the voltage divider already brings down the voltage anyways? Can the AD8031 op amp be removed? Also, to save power, can the voltage divider be replaced with a buck converter?



      enter image description here










      share|improve this question















      Is there a reason this schematic uses an op amp (AD8031) for the reference voltage of the op amp (AD8544) filter when the voltage divider already brings down the voltage anyways? Can the AD8031 op amp be removed? Also, to save power, can the voltage divider be replaced with a buck converter?



      enter image description here







      power-supply op-amp filter






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited yesterday







      Tapatio Sombrero

















      asked yesterday









      Tapatio SombreroTapatio Sombrero

      13516




      13516






















          3 Answers
          3






          active

          oldest

          votes


















          14















          Is there a reason this schematic uses an op amp (AD8031) for the reference voltage of the op amp (AD8544) filter when the voltage divider already brings down the voltage anyways?




          The usual reason to use an op-amp to buffer a divider like this is to ensure the reference voltage doesn't change if whatever it's connected to sinks or sources current.




          Can the AD8031 op amp be removed?




          In this case, since the AD8544 has only 4 pA input bias current, I'd expect the AD8031 can be removed without much change in performance.



          Another issue to watch for, since this reference is connected to two different signals, is whether removing the buffer could allow the two signals to crosstalk with each other. Given the high resistor values connecting the two op-amp inputs to the reference, it's unlikely this would be a real issue, but to be sure you could simply make two different dividers and use one for each of the filter stages.




          Also, to save power, can the voltage divider be replaced with a buck converter?




          Any buck converter will have some output ripple. If you used it here, that ripple would be coupled directly into your filtered signal. I wouldn't do it just to save something like 150 uA. (You'd also need to find a buck converter design with less than 150 uA quiescent current to make this a positve trade)



          If those 150 uA are really important to your application, you might rather find an op-amp with very low quiescent current (the AD8031 has 800 uA, you'd be looking for 10's of uA), replace the AD8031 with that, and increase the resistor values in the divider to 100 kohm or more.



          Aside



          The AD8031(A) is only rated to drive capacitive loads up to 15 pF and maintain stability. C2 and C4 in your schematic are probably causing the op-amp to generate noise (it may even be oscillating) rather than reducing noise. I'd remove them.






          share|improve this answer



















          • 1




            We don't know what else is hanging off of the V+ line -- if there is something drawing current, then taking out the buffer would screw things up. Agreed on the output capacitance issue. Driving capacitive loads with op-amps is well documented; the OP can do a search or ask here. Here is just one example result from searching on "op-amp capacitive load".
            – TimWescott
            yesterday






          • 1




            @TimWescott, true enough. OP, my answer is written assuming you've actually told us everything about your circuit. If you're hiding some part of the circuit, the answer may not actually apply.
            – The Photon
            yesterday



















          13















          Is there a reason ...




          Yes. The two 10k reisistors give the voltage reference an impedance of 5k. This means that if the current drawn from the reference changes by 0.1 mA that the voltage of the reference would change by 0.1m x 5k = 0.5 V. This would be a very unstable reference.



          The op-amp buffer fixes this. The output impedance of the buffer is close to zero in comparison. This is a stable reference.




          Can the AD8031 op amp be removed?




          Maybe, but probably not a good idea.




          Also, to save power, can the voltage divider be replaced with a buck converter?




          The voltage divider consumes $ I = frac {V}{R} = frac {3.3}{20k} = 165 mu text A $.



          A buck converter is designed for power supplies rather than a voltage reference. The converter would likely consume more than 165 μA so there would be no advantage.






          share|improve this answer



















          • 1




            The OP-amp draws 800 µA too, but it doesn't change the equation that much..
            – pipe
            22 hours ago



















          7














          That's a horrible circuit, I wonder where you got it from.



          The AD8031 is very intolerance of capacitive loads, see Figure 46 in the datasheet, so most likely that op-amp will be oscillating at high frequency, which will, at a minimum, cause increased power consumption.



          You can use a TLE2426, which will consume only 170uA typically at 5V.



          Below is a way to connect a conventional op-amp in a stable manner (from a TI ADC datasheet):



          enter image description here



          That's a low-noise high speed amplifier, for yours you might try increasing the resistor values by an order of magnitude.






          share|improve this answer























            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("schematics", function () {
            StackExchange.schematics.init();
            });
            }, "cicuitlab");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "135"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f416124%2fwhy-would-you-need-an-op-amp-for-reference-voltage-when-the-voltage-divider-does%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            14















            Is there a reason this schematic uses an op amp (AD8031) for the reference voltage of the op amp (AD8544) filter when the voltage divider already brings down the voltage anyways?




            The usual reason to use an op-amp to buffer a divider like this is to ensure the reference voltage doesn't change if whatever it's connected to sinks or sources current.




            Can the AD8031 op amp be removed?




            In this case, since the AD8544 has only 4 pA input bias current, I'd expect the AD8031 can be removed without much change in performance.



            Another issue to watch for, since this reference is connected to two different signals, is whether removing the buffer could allow the two signals to crosstalk with each other. Given the high resistor values connecting the two op-amp inputs to the reference, it's unlikely this would be a real issue, but to be sure you could simply make two different dividers and use one for each of the filter stages.




            Also, to save power, can the voltage divider be replaced with a buck converter?




            Any buck converter will have some output ripple. If you used it here, that ripple would be coupled directly into your filtered signal. I wouldn't do it just to save something like 150 uA. (You'd also need to find a buck converter design with less than 150 uA quiescent current to make this a positve trade)



            If those 150 uA are really important to your application, you might rather find an op-amp with very low quiescent current (the AD8031 has 800 uA, you'd be looking for 10's of uA), replace the AD8031 with that, and increase the resistor values in the divider to 100 kohm or more.



            Aside



            The AD8031(A) is only rated to drive capacitive loads up to 15 pF and maintain stability. C2 and C4 in your schematic are probably causing the op-amp to generate noise (it may even be oscillating) rather than reducing noise. I'd remove them.






            share|improve this answer



















            • 1




              We don't know what else is hanging off of the V+ line -- if there is something drawing current, then taking out the buffer would screw things up. Agreed on the output capacitance issue. Driving capacitive loads with op-amps is well documented; the OP can do a search or ask here. Here is just one example result from searching on "op-amp capacitive load".
              – TimWescott
              yesterday






            • 1




              @TimWescott, true enough. OP, my answer is written assuming you've actually told us everything about your circuit. If you're hiding some part of the circuit, the answer may not actually apply.
              – The Photon
              yesterday
















            14















            Is there a reason this schematic uses an op amp (AD8031) for the reference voltage of the op amp (AD8544) filter when the voltage divider already brings down the voltage anyways?




            The usual reason to use an op-amp to buffer a divider like this is to ensure the reference voltage doesn't change if whatever it's connected to sinks or sources current.




            Can the AD8031 op amp be removed?




            In this case, since the AD8544 has only 4 pA input bias current, I'd expect the AD8031 can be removed without much change in performance.



            Another issue to watch for, since this reference is connected to two different signals, is whether removing the buffer could allow the two signals to crosstalk with each other. Given the high resistor values connecting the two op-amp inputs to the reference, it's unlikely this would be a real issue, but to be sure you could simply make two different dividers and use one for each of the filter stages.




            Also, to save power, can the voltage divider be replaced with a buck converter?




            Any buck converter will have some output ripple. If you used it here, that ripple would be coupled directly into your filtered signal. I wouldn't do it just to save something like 150 uA. (You'd also need to find a buck converter design with less than 150 uA quiescent current to make this a positve trade)



            If those 150 uA are really important to your application, you might rather find an op-amp with very low quiescent current (the AD8031 has 800 uA, you'd be looking for 10's of uA), replace the AD8031 with that, and increase the resistor values in the divider to 100 kohm or more.



            Aside



            The AD8031(A) is only rated to drive capacitive loads up to 15 pF and maintain stability. C2 and C4 in your schematic are probably causing the op-amp to generate noise (it may even be oscillating) rather than reducing noise. I'd remove them.






            share|improve this answer



















            • 1




              We don't know what else is hanging off of the V+ line -- if there is something drawing current, then taking out the buffer would screw things up. Agreed on the output capacitance issue. Driving capacitive loads with op-amps is well documented; the OP can do a search or ask here. Here is just one example result from searching on "op-amp capacitive load".
              – TimWescott
              yesterday






            • 1




              @TimWescott, true enough. OP, my answer is written assuming you've actually told us everything about your circuit. If you're hiding some part of the circuit, the answer may not actually apply.
              – The Photon
              yesterday














            14












            14








            14







            Is there a reason this schematic uses an op amp (AD8031) for the reference voltage of the op amp (AD8544) filter when the voltage divider already brings down the voltage anyways?




            The usual reason to use an op-amp to buffer a divider like this is to ensure the reference voltage doesn't change if whatever it's connected to sinks or sources current.




            Can the AD8031 op amp be removed?




            In this case, since the AD8544 has only 4 pA input bias current, I'd expect the AD8031 can be removed without much change in performance.



            Another issue to watch for, since this reference is connected to two different signals, is whether removing the buffer could allow the two signals to crosstalk with each other. Given the high resistor values connecting the two op-amp inputs to the reference, it's unlikely this would be a real issue, but to be sure you could simply make two different dividers and use one for each of the filter stages.




            Also, to save power, can the voltage divider be replaced with a buck converter?




            Any buck converter will have some output ripple. If you used it here, that ripple would be coupled directly into your filtered signal. I wouldn't do it just to save something like 150 uA. (You'd also need to find a buck converter design with less than 150 uA quiescent current to make this a positve trade)



            If those 150 uA are really important to your application, you might rather find an op-amp with very low quiescent current (the AD8031 has 800 uA, you'd be looking for 10's of uA), replace the AD8031 with that, and increase the resistor values in the divider to 100 kohm or more.



            Aside



            The AD8031(A) is only rated to drive capacitive loads up to 15 pF and maintain stability. C2 and C4 in your schematic are probably causing the op-amp to generate noise (it may even be oscillating) rather than reducing noise. I'd remove them.






            share|improve this answer















            Is there a reason this schematic uses an op amp (AD8031) for the reference voltage of the op amp (AD8544) filter when the voltage divider already brings down the voltage anyways?




            The usual reason to use an op-amp to buffer a divider like this is to ensure the reference voltage doesn't change if whatever it's connected to sinks or sources current.




            Can the AD8031 op amp be removed?




            In this case, since the AD8544 has only 4 pA input bias current, I'd expect the AD8031 can be removed without much change in performance.



            Another issue to watch for, since this reference is connected to two different signals, is whether removing the buffer could allow the two signals to crosstalk with each other. Given the high resistor values connecting the two op-amp inputs to the reference, it's unlikely this would be a real issue, but to be sure you could simply make two different dividers and use one for each of the filter stages.




            Also, to save power, can the voltage divider be replaced with a buck converter?




            Any buck converter will have some output ripple. If you used it here, that ripple would be coupled directly into your filtered signal. I wouldn't do it just to save something like 150 uA. (You'd also need to find a buck converter design with less than 150 uA quiescent current to make this a positve trade)



            If those 150 uA are really important to your application, you might rather find an op-amp with very low quiescent current (the AD8031 has 800 uA, you'd be looking for 10's of uA), replace the AD8031 with that, and increase the resistor values in the divider to 100 kohm or more.



            Aside



            The AD8031(A) is only rated to drive capacitive loads up to 15 pF and maintain stability. C2 and C4 in your schematic are probably causing the op-amp to generate noise (it may even be oscillating) rather than reducing noise. I'd remove them.







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited yesterday

























            answered yesterday









            The PhotonThe Photon

            83.7k396195




            83.7k396195








            • 1




              We don't know what else is hanging off of the V+ line -- if there is something drawing current, then taking out the buffer would screw things up. Agreed on the output capacitance issue. Driving capacitive loads with op-amps is well documented; the OP can do a search or ask here. Here is just one example result from searching on "op-amp capacitive load".
              – TimWescott
              yesterday






            • 1




              @TimWescott, true enough. OP, my answer is written assuming you've actually told us everything about your circuit. If you're hiding some part of the circuit, the answer may not actually apply.
              – The Photon
              yesterday














            • 1




              We don't know what else is hanging off of the V+ line -- if there is something drawing current, then taking out the buffer would screw things up. Agreed on the output capacitance issue. Driving capacitive loads with op-amps is well documented; the OP can do a search or ask here. Here is just one example result from searching on "op-amp capacitive load".
              – TimWescott
              yesterday






            • 1




              @TimWescott, true enough. OP, my answer is written assuming you've actually told us everything about your circuit. If you're hiding some part of the circuit, the answer may not actually apply.
              – The Photon
              yesterday








            1




            1




            We don't know what else is hanging off of the V+ line -- if there is something drawing current, then taking out the buffer would screw things up. Agreed on the output capacitance issue. Driving capacitive loads with op-amps is well documented; the OP can do a search or ask here. Here is just one example result from searching on "op-amp capacitive load".
            – TimWescott
            yesterday




            We don't know what else is hanging off of the V+ line -- if there is something drawing current, then taking out the buffer would screw things up. Agreed on the output capacitance issue. Driving capacitive loads with op-amps is well documented; the OP can do a search or ask here. Here is just one example result from searching on "op-amp capacitive load".
            – TimWescott
            yesterday




            1




            1




            @TimWescott, true enough. OP, my answer is written assuming you've actually told us everything about your circuit. If you're hiding some part of the circuit, the answer may not actually apply.
            – The Photon
            yesterday




            @TimWescott, true enough. OP, my answer is written assuming you've actually told us everything about your circuit. If you're hiding some part of the circuit, the answer may not actually apply.
            – The Photon
            yesterday













            13















            Is there a reason ...




            Yes. The two 10k reisistors give the voltage reference an impedance of 5k. This means that if the current drawn from the reference changes by 0.1 mA that the voltage of the reference would change by 0.1m x 5k = 0.5 V. This would be a very unstable reference.



            The op-amp buffer fixes this. The output impedance of the buffer is close to zero in comparison. This is a stable reference.




            Can the AD8031 op amp be removed?




            Maybe, but probably not a good idea.




            Also, to save power, can the voltage divider be replaced with a buck converter?




            The voltage divider consumes $ I = frac {V}{R} = frac {3.3}{20k} = 165 mu text A $.



            A buck converter is designed for power supplies rather than a voltage reference. The converter would likely consume more than 165 μA so there would be no advantage.






            share|improve this answer



















            • 1




              The OP-amp draws 800 µA too, but it doesn't change the equation that much..
              – pipe
              22 hours ago
















            13















            Is there a reason ...




            Yes. The two 10k reisistors give the voltage reference an impedance of 5k. This means that if the current drawn from the reference changes by 0.1 mA that the voltage of the reference would change by 0.1m x 5k = 0.5 V. This would be a very unstable reference.



            The op-amp buffer fixes this. The output impedance of the buffer is close to zero in comparison. This is a stable reference.




            Can the AD8031 op amp be removed?




            Maybe, but probably not a good idea.




            Also, to save power, can the voltage divider be replaced with a buck converter?




            The voltage divider consumes $ I = frac {V}{R} = frac {3.3}{20k} = 165 mu text A $.



            A buck converter is designed for power supplies rather than a voltage reference. The converter would likely consume more than 165 μA so there would be no advantage.






            share|improve this answer



















            • 1




              The OP-amp draws 800 µA too, but it doesn't change the equation that much..
              – pipe
              22 hours ago














            13












            13








            13







            Is there a reason ...




            Yes. The two 10k reisistors give the voltage reference an impedance of 5k. This means that if the current drawn from the reference changes by 0.1 mA that the voltage of the reference would change by 0.1m x 5k = 0.5 V. This would be a very unstable reference.



            The op-amp buffer fixes this. The output impedance of the buffer is close to zero in comparison. This is a stable reference.




            Can the AD8031 op amp be removed?




            Maybe, but probably not a good idea.




            Also, to save power, can the voltage divider be replaced with a buck converter?




            The voltage divider consumes $ I = frac {V}{R} = frac {3.3}{20k} = 165 mu text A $.



            A buck converter is designed for power supplies rather than a voltage reference. The converter would likely consume more than 165 μA so there would be no advantage.






            share|improve this answer















            Is there a reason ...




            Yes. The two 10k reisistors give the voltage reference an impedance of 5k. This means that if the current drawn from the reference changes by 0.1 mA that the voltage of the reference would change by 0.1m x 5k = 0.5 V. This would be a very unstable reference.



            The op-amp buffer fixes this. The output impedance of the buffer is close to zero in comparison. This is a stable reference.




            Can the AD8031 op amp be removed?




            Maybe, but probably not a good idea.




            Also, to save power, can the voltage divider be replaced with a buck converter?




            The voltage divider consumes $ I = frac {V}{R} = frac {3.3}{20k} = 165 mu text A $.



            A buck converter is designed for power supplies rather than a voltage reference. The converter would likely consume more than 165 μA so there would be no advantage.







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited yesterday

























            answered yesterday









            TransistorTransistor

            81.1k778175




            81.1k778175








            • 1




              The OP-amp draws 800 µA too, but it doesn't change the equation that much..
              – pipe
              22 hours ago














            • 1




              The OP-amp draws 800 µA too, but it doesn't change the equation that much..
              – pipe
              22 hours ago








            1




            1




            The OP-amp draws 800 µA too, but it doesn't change the equation that much..
            – pipe
            22 hours ago




            The OP-amp draws 800 µA too, but it doesn't change the equation that much..
            – pipe
            22 hours ago











            7














            That's a horrible circuit, I wonder where you got it from.



            The AD8031 is very intolerance of capacitive loads, see Figure 46 in the datasheet, so most likely that op-amp will be oscillating at high frequency, which will, at a minimum, cause increased power consumption.



            You can use a TLE2426, which will consume only 170uA typically at 5V.



            Below is a way to connect a conventional op-amp in a stable manner (from a TI ADC datasheet):



            enter image description here



            That's a low-noise high speed amplifier, for yours you might try increasing the resistor values by an order of magnitude.






            share|improve this answer




























              7














              That's a horrible circuit, I wonder where you got it from.



              The AD8031 is very intolerance of capacitive loads, see Figure 46 in the datasheet, so most likely that op-amp will be oscillating at high frequency, which will, at a minimum, cause increased power consumption.



              You can use a TLE2426, which will consume only 170uA typically at 5V.



              Below is a way to connect a conventional op-amp in a stable manner (from a TI ADC datasheet):



              enter image description here



              That's a low-noise high speed amplifier, for yours you might try increasing the resistor values by an order of magnitude.






              share|improve this answer


























                7












                7








                7






                That's a horrible circuit, I wonder where you got it from.



                The AD8031 is very intolerance of capacitive loads, see Figure 46 in the datasheet, so most likely that op-amp will be oscillating at high frequency, which will, at a minimum, cause increased power consumption.



                You can use a TLE2426, which will consume only 170uA typically at 5V.



                Below is a way to connect a conventional op-amp in a stable manner (from a TI ADC datasheet):



                enter image description here



                That's a low-noise high speed amplifier, for yours you might try increasing the resistor values by an order of magnitude.






                share|improve this answer














                That's a horrible circuit, I wonder where you got it from.



                The AD8031 is very intolerance of capacitive loads, see Figure 46 in the datasheet, so most likely that op-amp will be oscillating at high frequency, which will, at a minimum, cause increased power consumption.



                You can use a TLE2426, which will consume only 170uA typically at 5V.



                Below is a way to connect a conventional op-amp in a stable manner (from a TI ADC datasheet):



                enter image description here



                That's a low-noise high speed amplifier, for yours you might try increasing the resistor values by an order of magnitude.







                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited yesterday

























                answered yesterday









                Spehro PefhanySpehro Pefhany

                204k4151408




                204k4151408






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Electrical Engineering Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2felectronics.stackexchange.com%2fquestions%2f416124%2fwhy-would-you-need-an-op-amp-for-reference-voltage-when-the-voltage-divider-does%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    What other Star Trek series did the main TNG cast show up in?

                    Berlina muro

                    Berlina aerponto