Mathematica gives an unexpected answer for Integrate












4















I need to integrate the following:
begin{equation}tag{1}
frac{sqrt{C + (1 - C) x^3}}{x},
end{equation}

where $0 < C < 1$ and $x$ is a positive variable (then $x^3 ge 0$). When I integrate:



Integrate[Sqrt[C + (1 - C) x^3]/x, x, Assumptions -> 0 < C < 1]


I get this answer:
begin{equation}tag{2}
frac{2}{3} sqrt{C + (1 - C), x^3} - frac{2}{3} sqrt{C} , mathrm{argtanh} Big( frac{sqrt{C + (1 - C) , x^3}}{sqrt{C}} Big).
end{equation}

This answer is wrong because the term inside parenthesis (inside the argtanh) is larger than 1, which invalidates the answer.



So how can I get the proper integration of (1), using Mathematica?





EDIT: Actually, what I need is to find the general solution of the following differential equation ($lambda$ is a positive constant):
begin{equation}tag{3}
frac{d a}{d t} = pm , frac{lambda , a}{sqrt{C + (1 - C) , a^3}},
end{equation}

i.e. the function $a(t)$ or the time $t(a)$.










share|improve this question

























  • When evaluating a definite integral don't the imaginary parts cancel out?

    – JimB
    6 hours ago











  • @JimB, I need the general solution on the indefinite integration, since I don't know the limits of the variable $x$ (except that $x > 0$). It's the solution of some differential equation.

    – Cham
    6 hours ago













  • You should change the subject line of the question from "wrong" to perhaps "unexpected" since Assuming[{0<C<1, x>=0}, Sqrt[C+(1-C) x^3]/x == D[Integrate[Sqrt[C+(1-C) x^3]/x, x], x] // Simplify] evaluates to True

    – Bob Hanlon
    2 hours ago











  • Tha antiderivative shown is fine. Can check by differentiation: In[646]:= i0 = Sqrt[C + (1 - C) x^3]/x; i1 = Integrate[i0, x]; Simplify[D[i1, x] - i0] Out[648]= 0

    – Daniel Lichtblau
    47 mins ago
















4















I need to integrate the following:
begin{equation}tag{1}
frac{sqrt{C + (1 - C) x^3}}{x},
end{equation}

where $0 < C < 1$ and $x$ is a positive variable (then $x^3 ge 0$). When I integrate:



Integrate[Sqrt[C + (1 - C) x^3]/x, x, Assumptions -> 0 < C < 1]


I get this answer:
begin{equation}tag{2}
frac{2}{3} sqrt{C + (1 - C), x^3} - frac{2}{3} sqrt{C} , mathrm{argtanh} Big( frac{sqrt{C + (1 - C) , x^3}}{sqrt{C}} Big).
end{equation}

This answer is wrong because the term inside parenthesis (inside the argtanh) is larger than 1, which invalidates the answer.



So how can I get the proper integration of (1), using Mathematica?





EDIT: Actually, what I need is to find the general solution of the following differential equation ($lambda$ is a positive constant):
begin{equation}tag{3}
frac{d a}{d t} = pm , frac{lambda , a}{sqrt{C + (1 - C) , a^3}},
end{equation}

i.e. the function $a(t)$ or the time $t(a)$.










share|improve this question

























  • When evaluating a definite integral don't the imaginary parts cancel out?

    – JimB
    6 hours ago











  • @JimB, I need the general solution on the indefinite integration, since I don't know the limits of the variable $x$ (except that $x > 0$). It's the solution of some differential equation.

    – Cham
    6 hours ago













  • You should change the subject line of the question from "wrong" to perhaps "unexpected" since Assuming[{0<C<1, x>=0}, Sqrt[C+(1-C) x^3]/x == D[Integrate[Sqrt[C+(1-C) x^3]/x, x], x] // Simplify] evaluates to True

    – Bob Hanlon
    2 hours ago











  • Tha antiderivative shown is fine. Can check by differentiation: In[646]:= i0 = Sqrt[C + (1 - C) x^3]/x; i1 = Integrate[i0, x]; Simplify[D[i1, x] - i0] Out[648]= 0

    – Daniel Lichtblau
    47 mins ago














4












4








4


1






I need to integrate the following:
begin{equation}tag{1}
frac{sqrt{C + (1 - C) x^3}}{x},
end{equation}

where $0 < C < 1$ and $x$ is a positive variable (then $x^3 ge 0$). When I integrate:



Integrate[Sqrt[C + (1 - C) x^3]/x, x, Assumptions -> 0 < C < 1]


I get this answer:
begin{equation}tag{2}
frac{2}{3} sqrt{C + (1 - C), x^3} - frac{2}{3} sqrt{C} , mathrm{argtanh} Big( frac{sqrt{C + (1 - C) , x^3}}{sqrt{C}} Big).
end{equation}

This answer is wrong because the term inside parenthesis (inside the argtanh) is larger than 1, which invalidates the answer.



So how can I get the proper integration of (1), using Mathematica?





EDIT: Actually, what I need is to find the general solution of the following differential equation ($lambda$ is a positive constant):
begin{equation}tag{3}
frac{d a}{d t} = pm , frac{lambda , a}{sqrt{C + (1 - C) , a^3}},
end{equation}

i.e. the function $a(t)$ or the time $t(a)$.










share|improve this question
















I need to integrate the following:
begin{equation}tag{1}
frac{sqrt{C + (1 - C) x^3}}{x},
end{equation}

where $0 < C < 1$ and $x$ is a positive variable (then $x^3 ge 0$). When I integrate:



Integrate[Sqrt[C + (1 - C) x^3]/x, x, Assumptions -> 0 < C < 1]


I get this answer:
begin{equation}tag{2}
frac{2}{3} sqrt{C + (1 - C), x^3} - frac{2}{3} sqrt{C} , mathrm{argtanh} Big( frac{sqrt{C + (1 - C) , x^3}}{sqrt{C}} Big).
end{equation}

This answer is wrong because the term inside parenthesis (inside the argtanh) is larger than 1, which invalidates the answer.



So how can I get the proper integration of (1), using Mathematica?





EDIT: Actually, what I need is to find the general solution of the following differential equation ($lambda$ is a positive constant):
begin{equation}tag{3}
frac{d a}{d t} = pm , frac{lambda , a}{sqrt{C + (1 - C) , a^3}},
end{equation}

i.e. the function $a(t)$ or the time $t(a)$.







differential-equations calculus-and-analysis functions trigonometry integral-equations






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 32 mins ago







Cham

















asked 6 hours ago









ChamCham

1,4371126




1,4371126













  • When evaluating a definite integral don't the imaginary parts cancel out?

    – JimB
    6 hours ago











  • @JimB, I need the general solution on the indefinite integration, since I don't know the limits of the variable $x$ (except that $x > 0$). It's the solution of some differential equation.

    – Cham
    6 hours ago













  • You should change the subject line of the question from "wrong" to perhaps "unexpected" since Assuming[{0<C<1, x>=0}, Sqrt[C+(1-C) x^3]/x == D[Integrate[Sqrt[C+(1-C) x^3]/x, x], x] // Simplify] evaluates to True

    – Bob Hanlon
    2 hours ago











  • Tha antiderivative shown is fine. Can check by differentiation: In[646]:= i0 = Sqrt[C + (1 - C) x^3]/x; i1 = Integrate[i0, x]; Simplify[D[i1, x] - i0] Out[648]= 0

    – Daniel Lichtblau
    47 mins ago



















  • When evaluating a definite integral don't the imaginary parts cancel out?

    – JimB
    6 hours ago











  • @JimB, I need the general solution on the indefinite integration, since I don't know the limits of the variable $x$ (except that $x > 0$). It's the solution of some differential equation.

    – Cham
    6 hours ago













  • You should change the subject line of the question from "wrong" to perhaps "unexpected" since Assuming[{0<C<1, x>=0}, Sqrt[C+(1-C) x^3]/x == D[Integrate[Sqrt[C+(1-C) x^3]/x, x], x] // Simplify] evaluates to True

    – Bob Hanlon
    2 hours ago











  • Tha antiderivative shown is fine. Can check by differentiation: In[646]:= i0 = Sqrt[C + (1 - C) x^3]/x; i1 = Integrate[i0, x]; Simplify[D[i1, x] - i0] Out[648]= 0

    – Daniel Lichtblau
    47 mins ago

















When evaluating a definite integral don't the imaginary parts cancel out?

– JimB
6 hours ago





When evaluating a definite integral don't the imaginary parts cancel out?

– JimB
6 hours ago













@JimB, I need the general solution on the indefinite integration, since I don't know the limits of the variable $x$ (except that $x > 0$). It's the solution of some differential equation.

– Cham
6 hours ago







@JimB, I need the general solution on the indefinite integration, since I don't know the limits of the variable $x$ (except that $x > 0$). It's the solution of some differential equation.

– Cham
6 hours ago















You should change the subject line of the question from "wrong" to perhaps "unexpected" since Assuming[{0<C<1, x>=0}, Sqrt[C+(1-C) x^3]/x == D[Integrate[Sqrt[C+(1-C) x^3]/x, x], x] // Simplify] evaluates to True

– Bob Hanlon
2 hours ago





You should change the subject line of the question from "wrong" to perhaps "unexpected" since Assuming[{0<C<1, x>=0}, Sqrt[C+(1-C) x^3]/x == D[Integrate[Sqrt[C+(1-C) x^3]/x, x], x] // Simplify] evaluates to True

– Bob Hanlon
2 hours ago













Tha antiderivative shown is fine. Can check by differentiation: In[646]:= i0 = Sqrt[C + (1 - C) x^3]/x; i1 = Integrate[i0, x]; Simplify[D[i1, x] - i0] Out[648]= 0

– Daniel Lichtblau
47 mins ago





Tha antiderivative shown is fine. Can check by differentiation: In[646]:= i0 = Sqrt[C + (1 - C) x^3]/x; i1 = Integrate[i0, x]; Simplify[D[i1, x] - i0] Out[648]= 0

– Daniel Lichtblau
47 mins ago










2 Answers
2






active

oldest

votes


















4














$intfrac{sqrt{C + (1 - C) x^3}}{x}dx=intfrac{left(sqrt{C + (1 - C) x^3}right)x^2}{x^3}dx$



Let $C + (1 - C) x^3=u^2$



$3(1 - C) x^2dx=2udu$



$frac{2}{3}intfrac{u^2du}{u^2-C}du$



$frac{2}{3}intleft(1+frac{c}{u^2-C}right)du$



$frac{2}{3}left(u+Cintfrac{du}{u^2-sqrt{C}^2}right)$



$frac{2}{3}left(u-Cfrac{Arctanh(frac{u}{sqrt{C}})}{sqrt{C}}right)$



Substituting back gives



begin{equation}tag{2}
frac{2}{3} sqrt{C + (1 - C), x^3} - frac{2}{3} sqrt{C} , mathrm{argtanh} Big( frac{sqrt{C + (1 - C) , x^3}}{sqrt{C}} Big).
end{equation}



FunctionDomain[ArcTanh[Sqrt[C + (1 - C) x^3]/Sqrt[C]], x]



-1 < Sqrt[C + x^3 - C x^3]/Sqrt[C] < 1 && -C - x^3 + C x^3 <= 0




Or



 ArcTanh[Sqrt[C + (1 - C) x^3]/Sqrt[C]] // TrigToExp



-(1/2) Log[1 - Sqrt[C + (1 - C) x^3]/Sqrt[C]] + 1/2 Log[1 + Sqrt[C + (1 - C) x^3]/Sqrt[C]]







share|improve this answer


























  • There's still a problem with the argument of arctanh.

    – Cham
    5 hours ago











  • I think it's better to split the integral of $frac{1}{u^2 - C}$ in two parts : $frac{1}{u - sqrt{C}} - frac{1}{u + sqrt{C}}$, then integration gives a $ln{dots}$.

    – Cham
    5 hours ago













  • They are equivalent..

    – Okkes Dulgerci
    5 hours ago











  • My solution appears to be this: begin{equation} frac{2 u}{3 sqrt{C}} + frac{1}{3} , ln{Big(frac{u - sqrt{C}}{u + sqrt{C}}Big)},end{equation} which is good since $u ge sqrt{C}$.

    – Cham
    5 hours ago





















4














Here are four five six forms for an antiderivative, the first ad1 being the same as the OP's and complex-valued over the intended domain. The other three four five are real-valued.



ad1 = Integrate[Sqrt[c + (1 - c) x^3]/x, x, Assumptions -> 0 < c < 1]
(* 2/3 Sqrt[c + x^3 - c x^3] - 2/3 Sqrt[c] ArcTanh[Sqrt[c + (1 - c) x^3]/Sqrt[c]] *)


The imaginary part of ad is constant so we can subtract it off (which is the point of @JimB's comment under the OP):



ad2 = ad1 /. {{x -> 1}, {x -> x}} // Differences // First;

Assuming[0 < c < 1 && x > 0,
TrigToExp@ad2 /. {Log[z_] /; Simplify[z < 0] :> Log[-1] + Log[-z]} //
Expand // FullSimplify
]
(*
2/3 (-1 + Sqrt[c + x^3 - c x^3] +
Sqrt[c] ArcTanh[(Sqrt[c] (x^3 - Sqrt[c + x^3 - c x^3]))/(c + x^3)])
*)


Applying the identity,
$$tanh ^{-1}left(frac{1}{z}right) - tanh ^{-1}(z)=frac{i pi}{2} ,,$$
changes ad1 by a constant, which results in another antiderivative:



ad3 = ad1 /. ArcTanh[z_] :> ArcTanh[1/z]
(* 2/3 Sqrt[c + x^3 - c x^3] - 2/3 Sqrt[c] ArcTanh[Sqrt[c]/Sqrt[c + (1 - c) x^3]] *)


Rewrite ad3 in terms of logarithms:



ad4 = TrigToExp@ad3 /. 
a__ Log[u_] + b__ Log[v_] + w__ /; Times@a == -Times@b :> a Log@Simplify[u/v] + w
(*
2/3 Sqrt[c + x^3 - c x^3] +
1/3 Sqrt[c] Log[(-Sqrt[c] + Sqrt[c + x^3 - c x^3]) /
(Sqrt[c] + Sqrt[c + x^3 - c x^3])]
*)


Check:



D[{ad1, ad2, ad3, ad4}, x] // Simplify
(*
{Sqrt[c + x^3 - c x^3]/x, Sqrt[c + x^3 - c x^3]/x,
Sqrt[c + x^3 - c x^3]/x, Sqrt[c + x^3 - c x^3]/x}
*)


Addendum:
Here is a fifth, the real part of ad1:



ad5 = ComplexExpand[Re[ad1], TargetFunctions -> {Re, Im}] // 
Simplify[#, 0 < c < 1 && x > (c/(1 - c))^(1/3)] &
(*
1/6 (4 Sqrt[c + x^3 - c x^3] +
Sqrt[c] Log[(x^3 - c (-2 + x^3) - 2 Sqrt[c (c + x^3 - c x^3)])/c] -
Sqrt[c] Log[(x^3 - c (-2 + x^3) + 2 Sqrt[c (c + x^3 - c x^3)])/c])
*)


Addendum 2:
Doing a line integral within the domain of interest will often give the desired result; however, this time it ran forever, until I turned off GenerateConditions. The antiderivative comes back in terms of HypergeometricPFQ which can be simplified with the aid of FunctionExpand.



Assuming[0 < c < 1 && x > 0 && t > 0, 
ad6 = Simplify@ FunctionExpand@
Integrate[Sqrt[c + (1 - c) t^3]/t, {t, 1, x},
Assumptions -> 0 < c < 1 && x > 0, GenerateConditions -> False]
]
(*
1/3 (-2 + 2 Sqrt[c + x^3 - c x^3] + 2 Sqrt[c] Log[1 + 1/Sqrt[c]] +
3 Sqrt[c] Log[x] - 2 Sqrt[c] Log[1 + Sqrt[1 + (-1 + 1/c) x^3]])
*)

(* Check *)
Simplify[D[ad6, x] - Sqrt[c + x^3 - c x^3]/x, 0 < c < 1 && x > 0]





share|improve this answer

























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "387"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f189413%2fmathematica-gives-an-unexpected-answer-for-integrate%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4














    $intfrac{sqrt{C + (1 - C) x^3}}{x}dx=intfrac{left(sqrt{C + (1 - C) x^3}right)x^2}{x^3}dx$



    Let $C + (1 - C) x^3=u^2$



    $3(1 - C) x^2dx=2udu$



    $frac{2}{3}intfrac{u^2du}{u^2-C}du$



    $frac{2}{3}intleft(1+frac{c}{u^2-C}right)du$



    $frac{2}{3}left(u+Cintfrac{du}{u^2-sqrt{C}^2}right)$



    $frac{2}{3}left(u-Cfrac{Arctanh(frac{u}{sqrt{C}})}{sqrt{C}}right)$



    Substituting back gives



    begin{equation}tag{2}
    frac{2}{3} sqrt{C + (1 - C), x^3} - frac{2}{3} sqrt{C} , mathrm{argtanh} Big( frac{sqrt{C + (1 - C) , x^3}}{sqrt{C}} Big).
    end{equation}



    FunctionDomain[ArcTanh[Sqrt[C + (1 - C) x^3]/Sqrt[C]], x]



    -1 < Sqrt[C + x^3 - C x^3]/Sqrt[C] < 1 && -C - x^3 + C x^3 <= 0




    Or



     ArcTanh[Sqrt[C + (1 - C) x^3]/Sqrt[C]] // TrigToExp



    -(1/2) Log[1 - Sqrt[C + (1 - C) x^3]/Sqrt[C]] + 1/2 Log[1 + Sqrt[C + (1 - C) x^3]/Sqrt[C]]







    share|improve this answer


























    • There's still a problem with the argument of arctanh.

      – Cham
      5 hours ago











    • I think it's better to split the integral of $frac{1}{u^2 - C}$ in two parts : $frac{1}{u - sqrt{C}} - frac{1}{u + sqrt{C}}$, then integration gives a $ln{dots}$.

      – Cham
      5 hours ago













    • They are equivalent..

      – Okkes Dulgerci
      5 hours ago











    • My solution appears to be this: begin{equation} frac{2 u}{3 sqrt{C}} + frac{1}{3} , ln{Big(frac{u - sqrt{C}}{u + sqrt{C}}Big)},end{equation} which is good since $u ge sqrt{C}$.

      – Cham
      5 hours ago


















    4














    $intfrac{sqrt{C + (1 - C) x^3}}{x}dx=intfrac{left(sqrt{C + (1 - C) x^3}right)x^2}{x^3}dx$



    Let $C + (1 - C) x^3=u^2$



    $3(1 - C) x^2dx=2udu$



    $frac{2}{3}intfrac{u^2du}{u^2-C}du$



    $frac{2}{3}intleft(1+frac{c}{u^2-C}right)du$



    $frac{2}{3}left(u+Cintfrac{du}{u^2-sqrt{C}^2}right)$



    $frac{2}{3}left(u-Cfrac{Arctanh(frac{u}{sqrt{C}})}{sqrt{C}}right)$



    Substituting back gives



    begin{equation}tag{2}
    frac{2}{3} sqrt{C + (1 - C), x^3} - frac{2}{3} sqrt{C} , mathrm{argtanh} Big( frac{sqrt{C + (1 - C) , x^3}}{sqrt{C}} Big).
    end{equation}



    FunctionDomain[ArcTanh[Sqrt[C + (1 - C) x^3]/Sqrt[C]], x]



    -1 < Sqrt[C + x^3 - C x^3]/Sqrt[C] < 1 && -C - x^3 + C x^3 <= 0




    Or



     ArcTanh[Sqrt[C + (1 - C) x^3]/Sqrt[C]] // TrigToExp



    -(1/2) Log[1 - Sqrt[C + (1 - C) x^3]/Sqrt[C]] + 1/2 Log[1 + Sqrt[C + (1 - C) x^3]/Sqrt[C]]







    share|improve this answer


























    • There's still a problem with the argument of arctanh.

      – Cham
      5 hours ago











    • I think it's better to split the integral of $frac{1}{u^2 - C}$ in two parts : $frac{1}{u - sqrt{C}} - frac{1}{u + sqrt{C}}$, then integration gives a $ln{dots}$.

      – Cham
      5 hours ago













    • They are equivalent..

      – Okkes Dulgerci
      5 hours ago











    • My solution appears to be this: begin{equation} frac{2 u}{3 sqrt{C}} + frac{1}{3} , ln{Big(frac{u - sqrt{C}}{u + sqrt{C}}Big)},end{equation} which is good since $u ge sqrt{C}$.

      – Cham
      5 hours ago
















    4












    4








    4







    $intfrac{sqrt{C + (1 - C) x^3}}{x}dx=intfrac{left(sqrt{C + (1 - C) x^3}right)x^2}{x^3}dx$



    Let $C + (1 - C) x^3=u^2$



    $3(1 - C) x^2dx=2udu$



    $frac{2}{3}intfrac{u^2du}{u^2-C}du$



    $frac{2}{3}intleft(1+frac{c}{u^2-C}right)du$



    $frac{2}{3}left(u+Cintfrac{du}{u^2-sqrt{C}^2}right)$



    $frac{2}{3}left(u-Cfrac{Arctanh(frac{u}{sqrt{C}})}{sqrt{C}}right)$



    Substituting back gives



    begin{equation}tag{2}
    frac{2}{3} sqrt{C + (1 - C), x^3} - frac{2}{3} sqrt{C} , mathrm{argtanh} Big( frac{sqrt{C + (1 - C) , x^3}}{sqrt{C}} Big).
    end{equation}



    FunctionDomain[ArcTanh[Sqrt[C + (1 - C) x^3]/Sqrt[C]], x]



    -1 < Sqrt[C + x^3 - C x^3]/Sqrt[C] < 1 && -C - x^3 + C x^3 <= 0




    Or



     ArcTanh[Sqrt[C + (1 - C) x^3]/Sqrt[C]] // TrigToExp



    -(1/2) Log[1 - Sqrt[C + (1 - C) x^3]/Sqrt[C]] + 1/2 Log[1 + Sqrt[C + (1 - C) x^3]/Sqrt[C]]







    share|improve this answer















    $intfrac{sqrt{C + (1 - C) x^3}}{x}dx=intfrac{left(sqrt{C + (1 - C) x^3}right)x^2}{x^3}dx$



    Let $C + (1 - C) x^3=u^2$



    $3(1 - C) x^2dx=2udu$



    $frac{2}{3}intfrac{u^2du}{u^2-C}du$



    $frac{2}{3}intleft(1+frac{c}{u^2-C}right)du$



    $frac{2}{3}left(u+Cintfrac{du}{u^2-sqrt{C}^2}right)$



    $frac{2}{3}left(u-Cfrac{Arctanh(frac{u}{sqrt{C}})}{sqrt{C}}right)$



    Substituting back gives



    begin{equation}tag{2}
    frac{2}{3} sqrt{C + (1 - C), x^3} - frac{2}{3} sqrt{C} , mathrm{argtanh} Big( frac{sqrt{C + (1 - C) , x^3}}{sqrt{C}} Big).
    end{equation}



    FunctionDomain[ArcTanh[Sqrt[C + (1 - C) x^3]/Sqrt[C]], x]



    -1 < Sqrt[C + x^3 - C x^3]/Sqrt[C] < 1 && -C - x^3 + C x^3 <= 0




    Or



     ArcTanh[Sqrt[C + (1 - C) x^3]/Sqrt[C]] // TrigToExp



    -(1/2) Log[1 - Sqrt[C + (1 - C) x^3]/Sqrt[C]] + 1/2 Log[1 + Sqrt[C + (1 - C) x^3]/Sqrt[C]]








    share|improve this answer














    share|improve this answer



    share|improve this answer








    edited 5 hours ago

























    answered 5 hours ago









    Okkes DulgerciOkkes Dulgerci

    4,2801816




    4,2801816













    • There's still a problem with the argument of arctanh.

      – Cham
      5 hours ago











    • I think it's better to split the integral of $frac{1}{u^2 - C}$ in two parts : $frac{1}{u - sqrt{C}} - frac{1}{u + sqrt{C}}$, then integration gives a $ln{dots}$.

      – Cham
      5 hours ago













    • They are equivalent..

      – Okkes Dulgerci
      5 hours ago











    • My solution appears to be this: begin{equation} frac{2 u}{3 sqrt{C}} + frac{1}{3} , ln{Big(frac{u - sqrt{C}}{u + sqrt{C}}Big)},end{equation} which is good since $u ge sqrt{C}$.

      – Cham
      5 hours ago





















    • There's still a problem with the argument of arctanh.

      – Cham
      5 hours ago











    • I think it's better to split the integral of $frac{1}{u^2 - C}$ in two parts : $frac{1}{u - sqrt{C}} - frac{1}{u + sqrt{C}}$, then integration gives a $ln{dots}$.

      – Cham
      5 hours ago













    • They are equivalent..

      – Okkes Dulgerci
      5 hours ago











    • My solution appears to be this: begin{equation} frac{2 u}{3 sqrt{C}} + frac{1}{3} , ln{Big(frac{u - sqrt{C}}{u + sqrt{C}}Big)},end{equation} which is good since $u ge sqrt{C}$.

      – Cham
      5 hours ago



















    There's still a problem with the argument of arctanh.

    – Cham
    5 hours ago





    There's still a problem with the argument of arctanh.

    – Cham
    5 hours ago













    I think it's better to split the integral of $frac{1}{u^2 - C}$ in two parts : $frac{1}{u - sqrt{C}} - frac{1}{u + sqrt{C}}$, then integration gives a $ln{dots}$.

    – Cham
    5 hours ago







    I think it's better to split the integral of $frac{1}{u^2 - C}$ in two parts : $frac{1}{u - sqrt{C}} - frac{1}{u + sqrt{C}}$, then integration gives a $ln{dots}$.

    – Cham
    5 hours ago















    They are equivalent..

    – Okkes Dulgerci
    5 hours ago





    They are equivalent..

    – Okkes Dulgerci
    5 hours ago













    My solution appears to be this: begin{equation} frac{2 u}{3 sqrt{C}} + frac{1}{3} , ln{Big(frac{u - sqrt{C}}{u + sqrt{C}}Big)},end{equation} which is good since $u ge sqrt{C}$.

    – Cham
    5 hours ago







    My solution appears to be this: begin{equation} frac{2 u}{3 sqrt{C}} + frac{1}{3} , ln{Big(frac{u - sqrt{C}}{u + sqrt{C}}Big)},end{equation} which is good since $u ge sqrt{C}$.

    – Cham
    5 hours ago













    4














    Here are four five six forms for an antiderivative, the first ad1 being the same as the OP's and complex-valued over the intended domain. The other three four five are real-valued.



    ad1 = Integrate[Sqrt[c + (1 - c) x^3]/x, x, Assumptions -> 0 < c < 1]
    (* 2/3 Sqrt[c + x^3 - c x^3] - 2/3 Sqrt[c] ArcTanh[Sqrt[c + (1 - c) x^3]/Sqrt[c]] *)


    The imaginary part of ad is constant so we can subtract it off (which is the point of @JimB's comment under the OP):



    ad2 = ad1 /. {{x -> 1}, {x -> x}} // Differences // First;

    Assuming[0 < c < 1 && x > 0,
    TrigToExp@ad2 /. {Log[z_] /; Simplify[z < 0] :> Log[-1] + Log[-z]} //
    Expand // FullSimplify
    ]
    (*
    2/3 (-1 + Sqrt[c + x^3 - c x^3] +
    Sqrt[c] ArcTanh[(Sqrt[c] (x^3 - Sqrt[c + x^3 - c x^3]))/(c + x^3)])
    *)


    Applying the identity,
    $$tanh ^{-1}left(frac{1}{z}right) - tanh ^{-1}(z)=frac{i pi}{2} ,,$$
    changes ad1 by a constant, which results in another antiderivative:



    ad3 = ad1 /. ArcTanh[z_] :> ArcTanh[1/z]
    (* 2/3 Sqrt[c + x^3 - c x^3] - 2/3 Sqrt[c] ArcTanh[Sqrt[c]/Sqrt[c + (1 - c) x^3]] *)


    Rewrite ad3 in terms of logarithms:



    ad4 = TrigToExp@ad3 /. 
    a__ Log[u_] + b__ Log[v_] + w__ /; Times@a == -Times@b :> a Log@Simplify[u/v] + w
    (*
    2/3 Sqrt[c + x^3 - c x^3] +
    1/3 Sqrt[c] Log[(-Sqrt[c] + Sqrt[c + x^3 - c x^3]) /
    (Sqrt[c] + Sqrt[c + x^3 - c x^3])]
    *)


    Check:



    D[{ad1, ad2, ad3, ad4}, x] // Simplify
    (*
    {Sqrt[c + x^3 - c x^3]/x, Sqrt[c + x^3 - c x^3]/x,
    Sqrt[c + x^3 - c x^3]/x, Sqrt[c + x^3 - c x^3]/x}
    *)


    Addendum:
    Here is a fifth, the real part of ad1:



    ad5 = ComplexExpand[Re[ad1], TargetFunctions -> {Re, Im}] // 
    Simplify[#, 0 < c < 1 && x > (c/(1 - c))^(1/3)] &
    (*
    1/6 (4 Sqrt[c + x^3 - c x^3] +
    Sqrt[c] Log[(x^3 - c (-2 + x^3) - 2 Sqrt[c (c + x^3 - c x^3)])/c] -
    Sqrt[c] Log[(x^3 - c (-2 + x^3) + 2 Sqrt[c (c + x^3 - c x^3)])/c])
    *)


    Addendum 2:
    Doing a line integral within the domain of interest will often give the desired result; however, this time it ran forever, until I turned off GenerateConditions. The antiderivative comes back in terms of HypergeometricPFQ which can be simplified with the aid of FunctionExpand.



    Assuming[0 < c < 1 && x > 0 && t > 0, 
    ad6 = Simplify@ FunctionExpand@
    Integrate[Sqrt[c + (1 - c) t^3]/t, {t, 1, x},
    Assumptions -> 0 < c < 1 && x > 0, GenerateConditions -> False]
    ]
    (*
    1/3 (-2 + 2 Sqrt[c + x^3 - c x^3] + 2 Sqrt[c] Log[1 + 1/Sqrt[c]] +
    3 Sqrt[c] Log[x] - 2 Sqrt[c] Log[1 + Sqrt[1 + (-1 + 1/c) x^3]])
    *)

    (* Check *)
    Simplify[D[ad6, x] - Sqrt[c + x^3 - c x^3]/x, 0 < c < 1 && x > 0]





    share|improve this answer






























      4














      Here are four five six forms for an antiderivative, the first ad1 being the same as the OP's and complex-valued over the intended domain. The other three four five are real-valued.



      ad1 = Integrate[Sqrt[c + (1 - c) x^3]/x, x, Assumptions -> 0 < c < 1]
      (* 2/3 Sqrt[c + x^3 - c x^3] - 2/3 Sqrt[c] ArcTanh[Sqrt[c + (1 - c) x^3]/Sqrt[c]] *)


      The imaginary part of ad is constant so we can subtract it off (which is the point of @JimB's comment under the OP):



      ad2 = ad1 /. {{x -> 1}, {x -> x}} // Differences // First;

      Assuming[0 < c < 1 && x > 0,
      TrigToExp@ad2 /. {Log[z_] /; Simplify[z < 0] :> Log[-1] + Log[-z]} //
      Expand // FullSimplify
      ]
      (*
      2/3 (-1 + Sqrt[c + x^3 - c x^3] +
      Sqrt[c] ArcTanh[(Sqrt[c] (x^3 - Sqrt[c + x^3 - c x^3]))/(c + x^3)])
      *)


      Applying the identity,
      $$tanh ^{-1}left(frac{1}{z}right) - tanh ^{-1}(z)=frac{i pi}{2} ,,$$
      changes ad1 by a constant, which results in another antiderivative:



      ad3 = ad1 /. ArcTanh[z_] :> ArcTanh[1/z]
      (* 2/3 Sqrt[c + x^3 - c x^3] - 2/3 Sqrt[c] ArcTanh[Sqrt[c]/Sqrt[c + (1 - c) x^3]] *)


      Rewrite ad3 in terms of logarithms:



      ad4 = TrigToExp@ad3 /. 
      a__ Log[u_] + b__ Log[v_] + w__ /; Times@a == -Times@b :> a Log@Simplify[u/v] + w
      (*
      2/3 Sqrt[c + x^3 - c x^3] +
      1/3 Sqrt[c] Log[(-Sqrt[c] + Sqrt[c + x^3 - c x^3]) /
      (Sqrt[c] + Sqrt[c + x^3 - c x^3])]
      *)


      Check:



      D[{ad1, ad2, ad3, ad4}, x] // Simplify
      (*
      {Sqrt[c + x^3 - c x^3]/x, Sqrt[c + x^3 - c x^3]/x,
      Sqrt[c + x^3 - c x^3]/x, Sqrt[c + x^3 - c x^3]/x}
      *)


      Addendum:
      Here is a fifth, the real part of ad1:



      ad5 = ComplexExpand[Re[ad1], TargetFunctions -> {Re, Im}] // 
      Simplify[#, 0 < c < 1 && x > (c/(1 - c))^(1/3)] &
      (*
      1/6 (4 Sqrt[c + x^3 - c x^3] +
      Sqrt[c] Log[(x^3 - c (-2 + x^3) - 2 Sqrt[c (c + x^3 - c x^3)])/c] -
      Sqrt[c] Log[(x^3 - c (-2 + x^3) + 2 Sqrt[c (c + x^3 - c x^3)])/c])
      *)


      Addendum 2:
      Doing a line integral within the domain of interest will often give the desired result; however, this time it ran forever, until I turned off GenerateConditions. The antiderivative comes back in terms of HypergeometricPFQ which can be simplified with the aid of FunctionExpand.



      Assuming[0 < c < 1 && x > 0 && t > 0, 
      ad6 = Simplify@ FunctionExpand@
      Integrate[Sqrt[c + (1 - c) t^3]/t, {t, 1, x},
      Assumptions -> 0 < c < 1 && x > 0, GenerateConditions -> False]
      ]
      (*
      1/3 (-2 + 2 Sqrt[c + x^3 - c x^3] + 2 Sqrt[c] Log[1 + 1/Sqrt[c]] +
      3 Sqrt[c] Log[x] - 2 Sqrt[c] Log[1 + Sqrt[1 + (-1 + 1/c) x^3]])
      *)

      (* Check *)
      Simplify[D[ad6, x] - Sqrt[c + x^3 - c x^3]/x, 0 < c < 1 && x > 0]





      share|improve this answer




























        4












        4








        4







        Here are four five six forms for an antiderivative, the first ad1 being the same as the OP's and complex-valued over the intended domain. The other three four five are real-valued.



        ad1 = Integrate[Sqrt[c + (1 - c) x^3]/x, x, Assumptions -> 0 < c < 1]
        (* 2/3 Sqrt[c + x^3 - c x^3] - 2/3 Sqrt[c] ArcTanh[Sqrt[c + (1 - c) x^3]/Sqrt[c]] *)


        The imaginary part of ad is constant so we can subtract it off (which is the point of @JimB's comment under the OP):



        ad2 = ad1 /. {{x -> 1}, {x -> x}} // Differences // First;

        Assuming[0 < c < 1 && x > 0,
        TrigToExp@ad2 /. {Log[z_] /; Simplify[z < 0] :> Log[-1] + Log[-z]} //
        Expand // FullSimplify
        ]
        (*
        2/3 (-1 + Sqrt[c + x^3 - c x^3] +
        Sqrt[c] ArcTanh[(Sqrt[c] (x^3 - Sqrt[c + x^3 - c x^3]))/(c + x^3)])
        *)


        Applying the identity,
        $$tanh ^{-1}left(frac{1}{z}right) - tanh ^{-1}(z)=frac{i pi}{2} ,,$$
        changes ad1 by a constant, which results in another antiderivative:



        ad3 = ad1 /. ArcTanh[z_] :> ArcTanh[1/z]
        (* 2/3 Sqrt[c + x^3 - c x^3] - 2/3 Sqrt[c] ArcTanh[Sqrt[c]/Sqrt[c + (1 - c) x^3]] *)


        Rewrite ad3 in terms of logarithms:



        ad4 = TrigToExp@ad3 /. 
        a__ Log[u_] + b__ Log[v_] + w__ /; Times@a == -Times@b :> a Log@Simplify[u/v] + w
        (*
        2/3 Sqrt[c + x^3 - c x^3] +
        1/3 Sqrt[c] Log[(-Sqrt[c] + Sqrt[c + x^3 - c x^3]) /
        (Sqrt[c] + Sqrt[c + x^3 - c x^3])]
        *)


        Check:



        D[{ad1, ad2, ad3, ad4}, x] // Simplify
        (*
        {Sqrt[c + x^3 - c x^3]/x, Sqrt[c + x^3 - c x^3]/x,
        Sqrt[c + x^3 - c x^3]/x, Sqrt[c + x^3 - c x^3]/x}
        *)


        Addendum:
        Here is a fifth, the real part of ad1:



        ad5 = ComplexExpand[Re[ad1], TargetFunctions -> {Re, Im}] // 
        Simplify[#, 0 < c < 1 && x > (c/(1 - c))^(1/3)] &
        (*
        1/6 (4 Sqrt[c + x^3 - c x^3] +
        Sqrt[c] Log[(x^3 - c (-2 + x^3) - 2 Sqrt[c (c + x^3 - c x^3)])/c] -
        Sqrt[c] Log[(x^3 - c (-2 + x^3) + 2 Sqrt[c (c + x^3 - c x^3)])/c])
        *)


        Addendum 2:
        Doing a line integral within the domain of interest will often give the desired result; however, this time it ran forever, until I turned off GenerateConditions. The antiderivative comes back in terms of HypergeometricPFQ which can be simplified with the aid of FunctionExpand.



        Assuming[0 < c < 1 && x > 0 && t > 0, 
        ad6 = Simplify@ FunctionExpand@
        Integrate[Sqrt[c + (1 - c) t^3]/t, {t, 1, x},
        Assumptions -> 0 < c < 1 && x > 0, GenerateConditions -> False]
        ]
        (*
        1/3 (-2 + 2 Sqrt[c + x^3 - c x^3] + 2 Sqrt[c] Log[1 + 1/Sqrt[c]] +
        3 Sqrt[c] Log[x] - 2 Sqrt[c] Log[1 + Sqrt[1 + (-1 + 1/c) x^3]])
        *)

        (* Check *)
        Simplify[D[ad6, x] - Sqrt[c + x^3 - c x^3]/x, 0 < c < 1 && x > 0]





        share|improve this answer















        Here are four five six forms for an antiderivative, the first ad1 being the same as the OP's and complex-valued over the intended domain. The other three four five are real-valued.



        ad1 = Integrate[Sqrt[c + (1 - c) x^3]/x, x, Assumptions -> 0 < c < 1]
        (* 2/3 Sqrt[c + x^3 - c x^3] - 2/3 Sqrt[c] ArcTanh[Sqrt[c + (1 - c) x^3]/Sqrt[c]] *)


        The imaginary part of ad is constant so we can subtract it off (which is the point of @JimB's comment under the OP):



        ad2 = ad1 /. {{x -> 1}, {x -> x}} // Differences // First;

        Assuming[0 < c < 1 && x > 0,
        TrigToExp@ad2 /. {Log[z_] /; Simplify[z < 0] :> Log[-1] + Log[-z]} //
        Expand // FullSimplify
        ]
        (*
        2/3 (-1 + Sqrt[c + x^3 - c x^3] +
        Sqrt[c] ArcTanh[(Sqrt[c] (x^3 - Sqrt[c + x^3 - c x^3]))/(c + x^3)])
        *)


        Applying the identity,
        $$tanh ^{-1}left(frac{1}{z}right) - tanh ^{-1}(z)=frac{i pi}{2} ,,$$
        changes ad1 by a constant, which results in another antiderivative:



        ad3 = ad1 /. ArcTanh[z_] :> ArcTanh[1/z]
        (* 2/3 Sqrt[c + x^3 - c x^3] - 2/3 Sqrt[c] ArcTanh[Sqrt[c]/Sqrt[c + (1 - c) x^3]] *)


        Rewrite ad3 in terms of logarithms:



        ad4 = TrigToExp@ad3 /. 
        a__ Log[u_] + b__ Log[v_] + w__ /; Times@a == -Times@b :> a Log@Simplify[u/v] + w
        (*
        2/3 Sqrt[c + x^3 - c x^3] +
        1/3 Sqrt[c] Log[(-Sqrt[c] + Sqrt[c + x^3 - c x^3]) /
        (Sqrt[c] + Sqrt[c + x^3 - c x^3])]
        *)


        Check:



        D[{ad1, ad2, ad3, ad4}, x] // Simplify
        (*
        {Sqrt[c + x^3 - c x^3]/x, Sqrt[c + x^3 - c x^3]/x,
        Sqrt[c + x^3 - c x^3]/x, Sqrt[c + x^3 - c x^3]/x}
        *)


        Addendum:
        Here is a fifth, the real part of ad1:



        ad5 = ComplexExpand[Re[ad1], TargetFunctions -> {Re, Im}] // 
        Simplify[#, 0 < c < 1 && x > (c/(1 - c))^(1/3)] &
        (*
        1/6 (4 Sqrt[c + x^3 - c x^3] +
        Sqrt[c] Log[(x^3 - c (-2 + x^3) - 2 Sqrt[c (c + x^3 - c x^3)])/c] -
        Sqrt[c] Log[(x^3 - c (-2 + x^3) + 2 Sqrt[c (c + x^3 - c x^3)])/c])
        *)


        Addendum 2:
        Doing a line integral within the domain of interest will often give the desired result; however, this time it ran forever, until I turned off GenerateConditions. The antiderivative comes back in terms of HypergeometricPFQ which can be simplified with the aid of FunctionExpand.



        Assuming[0 < c < 1 && x > 0 && t > 0, 
        ad6 = Simplify@ FunctionExpand@
        Integrate[Sqrt[c + (1 - c) t^3]/t, {t, 1, x},
        Assumptions -> 0 < c < 1 && x > 0, GenerateConditions -> False]
        ]
        (*
        1/3 (-2 + 2 Sqrt[c + x^3 - c x^3] + 2 Sqrt[c] Log[1 + 1/Sqrt[c]] +
        3 Sqrt[c] Log[x] - 2 Sqrt[c] Log[1 + Sqrt[1 + (-1 + 1/c) x^3]])
        *)

        (* Check *)
        Simplify[D[ad6, x] - Sqrt[c + x^3 - c x^3]/x, 0 < c < 1 && x > 0]






        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited 17 mins ago

























        answered 4 hours ago









        Michael E2Michael E2

        146k11197467




        146k11197467






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematica Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f189413%2fmathematica-gives-an-unexpected-answer-for-integrate%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            What other Star Trek series did the main TNG cast show up in?

            Berlina muro

            Berlina aerponto