Normal Operator || T^2|| = ||T||^2












2












$begingroup$


Given a complex inner product space X, and an operator T: X $rightarrow$ X is normal i.e. T$^*$T = TT$^*$.

How can we show ||T$^2$|| = ||T||$^2$?



By the definition of operator norm, it follows that ||T|| = sup $frac{||Tx||}{||x||}$ and ||T$^2$|| = sup $frac{||T^2x||}{||x||}$. Then I can express the numerator as a form of inner product. But I still am not able to make these two equal. Any good ideas?










share|cite|improve this question









$endgroup$

















    2












    $begingroup$


    Given a complex inner product space X, and an operator T: X $rightarrow$ X is normal i.e. T$^*$T = TT$^*$.

    How can we show ||T$^2$|| = ||T||$^2$?



    By the definition of operator norm, it follows that ||T|| = sup $frac{||Tx||}{||x||}$ and ||T$^2$|| = sup $frac{||T^2x||}{||x||}$. Then I can express the numerator as a form of inner product. But I still am not able to make these two equal. Any good ideas?










    share|cite|improve this question









    $endgroup$















      2












      2








      2





      $begingroup$


      Given a complex inner product space X, and an operator T: X $rightarrow$ X is normal i.e. T$^*$T = TT$^*$.

      How can we show ||T$^2$|| = ||T||$^2$?



      By the definition of operator norm, it follows that ||T|| = sup $frac{||Tx||}{||x||}$ and ||T$^2$|| = sup $frac{||T^2x||}{||x||}$. Then I can express the numerator as a form of inner product. But I still am not able to make these two equal. Any good ideas?










      share|cite|improve this question









      $endgroup$




      Given a complex inner product space X, and an operator T: X $rightarrow$ X is normal i.e. T$^*$T = TT$^*$.

      How can we show ||T$^2$|| = ||T||$^2$?



      By the definition of operator norm, it follows that ||T|| = sup $frac{||Tx||}{||x||}$ and ||T$^2$|| = sup $frac{||T^2x||}{||x||}$. Then I can express the numerator as a form of inner product. But I still am not able to make these two equal. Any good ideas?







      linear-algebra






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 1 hour ago









      EricEric

      798




      798






















          1 Answer
          1






          active

          oldest

          votes


















          5












          $begingroup$

          If $T$ is normal, then $|Tx|^2=left<Tx,Txright>=left<x,T^*Txright>
          =left<x,TT^*xright>=|T^*x|^2$
          , so $|Tx|=|T^*x|$ (and therefore
          $|T|=|T^*|$).
          Then (replacing $x$ by $Tx$)
          $|T^2x|=|T^*Tx|$ so that $|T^2|=|T^*T|$. But also
          $|Tx|^2=left<x,T^*Txright>le|T^*T||x|^2$ so that $|T|^2le|T^*T|
          =|T^2|$
          . But $|T^2|le|T|^2$. We conclude that $|T^2|=|T|^2$
          whenever $T$ is normal.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks! By the way, how can we get (i) ||Tx|| = ||T*x|| implies that ||T|| = ||T*||?
            $endgroup$
            – Eric
            20 mins ago










          • $begingroup$
            (ii) why can we have <x, T$^*$Tx> $leq$ ||T$^*$T|| ||x||$^2$?
            $endgroup$
            – Eric
            19 mins ago








          • 1




            $begingroup$
            By the definition: $|T|=sup_{|x|=1}|Tx|$. @Eric
            $endgroup$
            – Lord Shark the Unknown
            19 mins ago






          • 1




            $begingroup$
            @eric $|left<x,Axright>|le|x||Ax|le|A||x|^2$.
            $endgroup$
            – Lord Shark the Unknown
            17 mins ago












          Your Answer








          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3197793%2fnormal-operator-t2-t2%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          5












          $begingroup$

          If $T$ is normal, then $|Tx|^2=left<Tx,Txright>=left<x,T^*Txright>
          =left<x,TT^*xright>=|T^*x|^2$
          , so $|Tx|=|T^*x|$ (and therefore
          $|T|=|T^*|$).
          Then (replacing $x$ by $Tx$)
          $|T^2x|=|T^*Tx|$ so that $|T^2|=|T^*T|$. But also
          $|Tx|^2=left<x,T^*Txright>le|T^*T||x|^2$ so that $|T|^2le|T^*T|
          =|T^2|$
          . But $|T^2|le|T|^2$. We conclude that $|T^2|=|T|^2$
          whenever $T$ is normal.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks! By the way, how can we get (i) ||Tx|| = ||T*x|| implies that ||T|| = ||T*||?
            $endgroup$
            – Eric
            20 mins ago










          • $begingroup$
            (ii) why can we have <x, T$^*$Tx> $leq$ ||T$^*$T|| ||x||$^2$?
            $endgroup$
            – Eric
            19 mins ago








          • 1




            $begingroup$
            By the definition: $|T|=sup_{|x|=1}|Tx|$. @Eric
            $endgroup$
            – Lord Shark the Unknown
            19 mins ago






          • 1




            $begingroup$
            @eric $|left<x,Axright>|le|x||Ax|le|A||x|^2$.
            $endgroup$
            – Lord Shark the Unknown
            17 mins ago
















          5












          $begingroup$

          If $T$ is normal, then $|Tx|^2=left<Tx,Txright>=left<x,T^*Txright>
          =left<x,TT^*xright>=|T^*x|^2$
          , so $|Tx|=|T^*x|$ (and therefore
          $|T|=|T^*|$).
          Then (replacing $x$ by $Tx$)
          $|T^2x|=|T^*Tx|$ so that $|T^2|=|T^*T|$. But also
          $|Tx|^2=left<x,T^*Txright>le|T^*T||x|^2$ so that $|T|^2le|T^*T|
          =|T^2|$
          . But $|T^2|le|T|^2$. We conclude that $|T^2|=|T|^2$
          whenever $T$ is normal.






          share|cite|improve this answer









          $endgroup$













          • $begingroup$
            Thanks! By the way, how can we get (i) ||Tx|| = ||T*x|| implies that ||T|| = ||T*||?
            $endgroup$
            – Eric
            20 mins ago










          • $begingroup$
            (ii) why can we have <x, T$^*$Tx> $leq$ ||T$^*$T|| ||x||$^2$?
            $endgroup$
            – Eric
            19 mins ago








          • 1




            $begingroup$
            By the definition: $|T|=sup_{|x|=1}|Tx|$. @Eric
            $endgroup$
            – Lord Shark the Unknown
            19 mins ago






          • 1




            $begingroup$
            @eric $|left<x,Axright>|le|x||Ax|le|A||x|^2$.
            $endgroup$
            – Lord Shark the Unknown
            17 mins ago














          5












          5








          5





          $begingroup$

          If $T$ is normal, then $|Tx|^2=left<Tx,Txright>=left<x,T^*Txright>
          =left<x,TT^*xright>=|T^*x|^2$
          , so $|Tx|=|T^*x|$ (and therefore
          $|T|=|T^*|$).
          Then (replacing $x$ by $Tx$)
          $|T^2x|=|T^*Tx|$ so that $|T^2|=|T^*T|$. But also
          $|Tx|^2=left<x,T^*Txright>le|T^*T||x|^2$ so that $|T|^2le|T^*T|
          =|T^2|$
          . But $|T^2|le|T|^2$. We conclude that $|T^2|=|T|^2$
          whenever $T$ is normal.






          share|cite|improve this answer









          $endgroup$



          If $T$ is normal, then $|Tx|^2=left<Tx,Txright>=left<x,T^*Txright>
          =left<x,TT^*xright>=|T^*x|^2$
          , so $|Tx|=|T^*x|$ (and therefore
          $|T|=|T^*|$).
          Then (replacing $x$ by $Tx$)
          $|T^2x|=|T^*Tx|$ so that $|T^2|=|T^*T|$. But also
          $|Tx|^2=left<x,T^*Txright>le|T^*T||x|^2$ so that $|T|^2le|T^*T|
          =|T^2|$
          . But $|T^2|le|T|^2$. We conclude that $|T^2|=|T|^2$
          whenever $T$ is normal.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 37 mins ago









          Lord Shark the UnknownLord Shark the Unknown

          109k1163136




          109k1163136












          • $begingroup$
            Thanks! By the way, how can we get (i) ||Tx|| = ||T*x|| implies that ||T|| = ||T*||?
            $endgroup$
            – Eric
            20 mins ago










          • $begingroup$
            (ii) why can we have <x, T$^*$Tx> $leq$ ||T$^*$T|| ||x||$^2$?
            $endgroup$
            – Eric
            19 mins ago








          • 1




            $begingroup$
            By the definition: $|T|=sup_{|x|=1}|Tx|$. @Eric
            $endgroup$
            – Lord Shark the Unknown
            19 mins ago






          • 1




            $begingroup$
            @eric $|left<x,Axright>|le|x||Ax|le|A||x|^2$.
            $endgroup$
            – Lord Shark the Unknown
            17 mins ago


















          • $begingroup$
            Thanks! By the way, how can we get (i) ||Tx|| = ||T*x|| implies that ||T|| = ||T*||?
            $endgroup$
            – Eric
            20 mins ago










          • $begingroup$
            (ii) why can we have <x, T$^*$Tx> $leq$ ||T$^*$T|| ||x||$^2$?
            $endgroup$
            – Eric
            19 mins ago








          • 1




            $begingroup$
            By the definition: $|T|=sup_{|x|=1}|Tx|$. @Eric
            $endgroup$
            – Lord Shark the Unknown
            19 mins ago






          • 1




            $begingroup$
            @eric $|left<x,Axright>|le|x||Ax|le|A||x|^2$.
            $endgroup$
            – Lord Shark the Unknown
            17 mins ago
















          $begingroup$
          Thanks! By the way, how can we get (i) ||Tx|| = ||T*x|| implies that ||T|| = ||T*||?
          $endgroup$
          – Eric
          20 mins ago




          $begingroup$
          Thanks! By the way, how can we get (i) ||Tx|| = ||T*x|| implies that ||T|| = ||T*||?
          $endgroup$
          – Eric
          20 mins ago












          $begingroup$
          (ii) why can we have <x, T$^*$Tx> $leq$ ||T$^*$T|| ||x||$^2$?
          $endgroup$
          – Eric
          19 mins ago






          $begingroup$
          (ii) why can we have <x, T$^*$Tx> $leq$ ||T$^*$T|| ||x||$^2$?
          $endgroup$
          – Eric
          19 mins ago






          1




          1




          $begingroup$
          By the definition: $|T|=sup_{|x|=1}|Tx|$. @Eric
          $endgroup$
          – Lord Shark the Unknown
          19 mins ago




          $begingroup$
          By the definition: $|T|=sup_{|x|=1}|Tx|$. @Eric
          $endgroup$
          – Lord Shark the Unknown
          19 mins ago




          1




          1




          $begingroup$
          @eric $|left<x,Axright>|le|x||Ax|le|A||x|^2$.
          $endgroup$
          – Lord Shark the Unknown
          17 mins ago




          $begingroup$
          @eric $|left<x,Axright>|le|x||Ax|le|A||x|^2$.
          $endgroup$
          – Lord Shark the Unknown
          17 mins ago


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3197793%2fnormal-operator-t2-t2%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          What other Star Trek series did the main TNG cast show up in?

          Berlina muro

          Berlina aerponto