The Clique vs. Independent Set Problem












2












$begingroup$


Suppose you have an undirected graph $G = (V, E)$, known to both Alice and Bob, Alice gets an independent set of $G$. Bob gets a Clique $B ⊆ V$.



Is there any algorithm in $O(log^2 n)$ bits that finds whether
$ A ∩ B = Ø $?



This is a well known communication complexity problem called CIS problem that was described by Yannakakis.





  • Lecture notes; the claim is Theorem 3

  • Link to Nisan & Kushilevitz's textbook


I'm not sure why and how does this work exactly. and which part of the $n/2$ vertices are reduced by both players.



P.S. I came to a conclusion that an independent and a clique can intersect in at most one vertex.










share|cite|improve this question











$endgroup$












  • $begingroup$
    The lecture notes contain a complete proof.
    $endgroup$
    – Yuval Filmus
    15 hours ago










  • $begingroup$
    I did not understand the algorithm completely to understand the proof itself.
    $endgroup$
    – Jay
    14 hours ago
















2












$begingroup$


Suppose you have an undirected graph $G = (V, E)$, known to both Alice and Bob, Alice gets an independent set of $G$. Bob gets a Clique $B ⊆ V$.



Is there any algorithm in $O(log^2 n)$ bits that finds whether
$ A ∩ B = Ø $?



This is a well known communication complexity problem called CIS problem that was described by Yannakakis.





  • Lecture notes; the claim is Theorem 3

  • Link to Nisan & Kushilevitz's textbook


I'm not sure why and how does this work exactly. and which part of the $n/2$ vertices are reduced by both players.



P.S. I came to a conclusion that an independent and a clique can intersect in at most one vertex.










share|cite|improve this question











$endgroup$












  • $begingroup$
    The lecture notes contain a complete proof.
    $endgroup$
    – Yuval Filmus
    15 hours ago










  • $begingroup$
    I did not understand the algorithm completely to understand the proof itself.
    $endgroup$
    – Jay
    14 hours ago














2












2








2





$begingroup$


Suppose you have an undirected graph $G = (V, E)$, known to both Alice and Bob, Alice gets an independent set of $G$. Bob gets a Clique $B ⊆ V$.



Is there any algorithm in $O(log^2 n)$ bits that finds whether
$ A ∩ B = Ø $?



This is a well known communication complexity problem called CIS problem that was described by Yannakakis.





  • Lecture notes; the claim is Theorem 3

  • Link to Nisan & Kushilevitz's textbook


I'm not sure why and how does this work exactly. and which part of the $n/2$ vertices are reduced by both players.



P.S. I came to a conclusion that an independent and a clique can intersect in at most one vertex.










share|cite|improve this question











$endgroup$




Suppose you have an undirected graph $G = (V, E)$, known to both Alice and Bob, Alice gets an independent set of $G$. Bob gets a Clique $B ⊆ V$.



Is there any algorithm in $O(log^2 n)$ bits that finds whether
$ A ∩ B = Ø $?



This is a well known communication complexity problem called CIS problem that was described by Yannakakis.





  • Lecture notes; the claim is Theorem 3

  • Link to Nisan & Kushilevitz's textbook


I'm not sure why and how does this work exactly. and which part of the $n/2$ vertices are reduced by both players.



P.S. I came to a conclusion that an independent and a clique can intersect in at most one vertex.







algorithms graphs communication-complexity






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 14 hours ago









Yuval Filmus

196k15184349




196k15184349










asked 15 hours ago









JayJay

1415




1415












  • $begingroup$
    The lecture notes contain a complete proof.
    $endgroup$
    – Yuval Filmus
    15 hours ago










  • $begingroup$
    I did not understand the algorithm completely to understand the proof itself.
    $endgroup$
    – Jay
    14 hours ago


















  • $begingroup$
    The lecture notes contain a complete proof.
    $endgroup$
    – Yuval Filmus
    15 hours ago










  • $begingroup$
    I did not understand the algorithm completely to understand the proof itself.
    $endgroup$
    – Jay
    14 hours ago
















$begingroup$
The lecture notes contain a complete proof.
$endgroup$
– Yuval Filmus
15 hours ago




$begingroup$
The lecture notes contain a complete proof.
$endgroup$
– Yuval Filmus
15 hours ago












$begingroup$
I did not understand the algorithm completely to understand the proof itself.
$endgroup$
– Jay
14 hours ago




$begingroup$
I did not understand the algorithm completely to understand the proof itself.
$endgroup$
– Jay
14 hours ago










2 Answers
2






active

oldest

votes


















4












$begingroup$

The two players construct a sequence $V_0 supset V_1 supset cdots supset V_m$ of sets of vertices such that:





  1. $V_0$ consists of all vertices in the graph.


  2. $|V_{i+1}| leq (|V_i|+1)/2$.


  3. $V_i supseteq C cap I$.


The players stop once $|V_m| leq 1$. At this point they can answer the question using $O(1)$ communication.



At round $i$, the players know $V_{i-1}$, and wish to construct $V_i$. They act as follows:




  • If $C cap V_{i-1}$ contains a vertex $v$ with fewer than $|V_{i-1}|/2$ neighbors in $V_{i-1}$, then Alice sends Bob one such vertex $v$, and both players set $V_i$ to be this set of neighbors, together with $v$ (this is valid since $C cap I subseteq C subseteq V_i$). Otherwise, she sends $bot$.


  • If Alice sent $bot$ and $I cap V_{i-1}$ contains a vertex $v$ with fewer than $|V_{i-1}|/2$ non-neighbors in $V_{i-1}$, then Bob sends Alice one such vertex $v$, and both players set $V_i$ to be this set of non-neighbors, together with $v$ (this is valid since $C cap I subseteq I subseteq V_i$). Otherwise, he sends Alice $bot$.


  • If both players sent $bot$, then $C cap I = emptyset$. Indeed, if $v in C cap I$, then $v$ has at least $|V_{i-1}|/2$ neighbors and at least $|V_{i-1}|/2$ non-neighbors inside $|V_{i-1}|$, whereas the number of potential neighbors and non-neighbors is just $|V_{i-1}|-1$. Therefore the players can abort and conclude that $C cap I = emptyset$.



Each round takes $O(log n)$ bits of communication, and there are $O(log n)$ rounds, for a total of $O(log^2 n)$ bits of communication.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    How does the number of vertices are resuced by factor of 2 - this leads to the $O(log(n))$ rounds?
    $endgroup$
    – Jay
    13 hours ago












  • $begingroup$
    I'm sorry, I can't explain it any better than what I wrote.
    $endgroup$
    – Yuval Filmus
    13 hours ago










  • $begingroup$
    Thanks a lot Yuval, I’ll try to figure it out.
    $endgroup$
    – Jay
    13 hours ago



















1












$begingroup$

The $O(log n)$ rounds comes from the fact that we are doing a binary search:



If the algorithm fails to terminate, then either Alice or Bob share a vertex v.



If Alice shares $v$, then $v$ has fewer than $|V_{i-1}|/2$ neighbors in $V_{i-1}$. $V_i$ is set to be this neighborhood (along with v). Observe that $|V_i|< |V_{i-1}|/2+1$ implying $|V_i|leq |V_{i-1}|/2$ (simply case check when $|V_{i-1}|$ is odd or even).



Similarly, if Bob shares $v$, then $v$ has fewer than $|V_{i-1}|/2$ non-neighbors in $V_{i-1}$. $V_i$ is set to be this non-neighborhood (along with v). As such, $|V_i|leq |V_{i-1}|/2$.



In both cases $|V_i|leq |V_{i-1}|/2$. As such, if the algorithm fails to terminate after $k$ iterations, then, inductively, $|V_k|leq |V_0|/2^k$. Finally, observe that the algorithm terminates if $1leq |V_k|leq |V_0|/2^k$ for any k, i.e., we will terminate if ever $V_k$ is a singleton or empty. Solving for $k$, we must terminate if $kgeq log |V_0|=log n$.






share|cite|improve this answer










New contributor




James Bailey is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$













  • $begingroup$
    If $|V_{i-1}|$ is odd then your inequality is off by 1/2.
    $endgroup$
    – Yuval Filmus
    17 mins ago












Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "419"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106562%2fthe-clique-vs-independent-set-problem%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

The two players construct a sequence $V_0 supset V_1 supset cdots supset V_m$ of sets of vertices such that:





  1. $V_0$ consists of all vertices in the graph.


  2. $|V_{i+1}| leq (|V_i|+1)/2$.


  3. $V_i supseteq C cap I$.


The players stop once $|V_m| leq 1$. At this point they can answer the question using $O(1)$ communication.



At round $i$, the players know $V_{i-1}$, and wish to construct $V_i$. They act as follows:




  • If $C cap V_{i-1}$ contains a vertex $v$ with fewer than $|V_{i-1}|/2$ neighbors in $V_{i-1}$, then Alice sends Bob one such vertex $v$, and both players set $V_i$ to be this set of neighbors, together with $v$ (this is valid since $C cap I subseteq C subseteq V_i$). Otherwise, she sends $bot$.


  • If Alice sent $bot$ and $I cap V_{i-1}$ contains a vertex $v$ with fewer than $|V_{i-1}|/2$ non-neighbors in $V_{i-1}$, then Bob sends Alice one such vertex $v$, and both players set $V_i$ to be this set of non-neighbors, together with $v$ (this is valid since $C cap I subseteq I subseteq V_i$). Otherwise, he sends Alice $bot$.


  • If both players sent $bot$, then $C cap I = emptyset$. Indeed, if $v in C cap I$, then $v$ has at least $|V_{i-1}|/2$ neighbors and at least $|V_{i-1}|/2$ non-neighbors inside $|V_{i-1}|$, whereas the number of potential neighbors and non-neighbors is just $|V_{i-1}|-1$. Therefore the players can abort and conclude that $C cap I = emptyset$.



Each round takes $O(log n)$ bits of communication, and there are $O(log n)$ rounds, for a total of $O(log^2 n)$ bits of communication.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    How does the number of vertices are resuced by factor of 2 - this leads to the $O(log(n))$ rounds?
    $endgroup$
    – Jay
    13 hours ago












  • $begingroup$
    I'm sorry, I can't explain it any better than what I wrote.
    $endgroup$
    – Yuval Filmus
    13 hours ago










  • $begingroup$
    Thanks a lot Yuval, I’ll try to figure it out.
    $endgroup$
    – Jay
    13 hours ago
















4












$begingroup$

The two players construct a sequence $V_0 supset V_1 supset cdots supset V_m$ of sets of vertices such that:





  1. $V_0$ consists of all vertices in the graph.


  2. $|V_{i+1}| leq (|V_i|+1)/2$.


  3. $V_i supseteq C cap I$.


The players stop once $|V_m| leq 1$. At this point they can answer the question using $O(1)$ communication.



At round $i$, the players know $V_{i-1}$, and wish to construct $V_i$. They act as follows:




  • If $C cap V_{i-1}$ contains a vertex $v$ with fewer than $|V_{i-1}|/2$ neighbors in $V_{i-1}$, then Alice sends Bob one such vertex $v$, and both players set $V_i$ to be this set of neighbors, together with $v$ (this is valid since $C cap I subseteq C subseteq V_i$). Otherwise, she sends $bot$.


  • If Alice sent $bot$ and $I cap V_{i-1}$ contains a vertex $v$ with fewer than $|V_{i-1}|/2$ non-neighbors in $V_{i-1}$, then Bob sends Alice one such vertex $v$, and both players set $V_i$ to be this set of non-neighbors, together with $v$ (this is valid since $C cap I subseteq I subseteq V_i$). Otherwise, he sends Alice $bot$.


  • If both players sent $bot$, then $C cap I = emptyset$. Indeed, if $v in C cap I$, then $v$ has at least $|V_{i-1}|/2$ neighbors and at least $|V_{i-1}|/2$ non-neighbors inside $|V_{i-1}|$, whereas the number of potential neighbors and non-neighbors is just $|V_{i-1}|-1$. Therefore the players can abort and conclude that $C cap I = emptyset$.



Each round takes $O(log n)$ bits of communication, and there are $O(log n)$ rounds, for a total of $O(log^2 n)$ bits of communication.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    How does the number of vertices are resuced by factor of 2 - this leads to the $O(log(n))$ rounds?
    $endgroup$
    – Jay
    13 hours ago












  • $begingroup$
    I'm sorry, I can't explain it any better than what I wrote.
    $endgroup$
    – Yuval Filmus
    13 hours ago










  • $begingroup$
    Thanks a lot Yuval, I’ll try to figure it out.
    $endgroup$
    – Jay
    13 hours ago














4












4








4





$begingroup$

The two players construct a sequence $V_0 supset V_1 supset cdots supset V_m$ of sets of vertices such that:





  1. $V_0$ consists of all vertices in the graph.


  2. $|V_{i+1}| leq (|V_i|+1)/2$.


  3. $V_i supseteq C cap I$.


The players stop once $|V_m| leq 1$. At this point they can answer the question using $O(1)$ communication.



At round $i$, the players know $V_{i-1}$, and wish to construct $V_i$. They act as follows:




  • If $C cap V_{i-1}$ contains a vertex $v$ with fewer than $|V_{i-1}|/2$ neighbors in $V_{i-1}$, then Alice sends Bob one such vertex $v$, and both players set $V_i$ to be this set of neighbors, together with $v$ (this is valid since $C cap I subseteq C subseteq V_i$). Otherwise, she sends $bot$.


  • If Alice sent $bot$ and $I cap V_{i-1}$ contains a vertex $v$ with fewer than $|V_{i-1}|/2$ non-neighbors in $V_{i-1}$, then Bob sends Alice one such vertex $v$, and both players set $V_i$ to be this set of non-neighbors, together with $v$ (this is valid since $C cap I subseteq I subseteq V_i$). Otherwise, he sends Alice $bot$.


  • If both players sent $bot$, then $C cap I = emptyset$. Indeed, if $v in C cap I$, then $v$ has at least $|V_{i-1}|/2$ neighbors and at least $|V_{i-1}|/2$ non-neighbors inside $|V_{i-1}|$, whereas the number of potential neighbors and non-neighbors is just $|V_{i-1}|-1$. Therefore the players can abort and conclude that $C cap I = emptyset$.



Each round takes $O(log n)$ bits of communication, and there are $O(log n)$ rounds, for a total of $O(log^2 n)$ bits of communication.






share|cite|improve this answer











$endgroup$



The two players construct a sequence $V_0 supset V_1 supset cdots supset V_m$ of sets of vertices such that:





  1. $V_0$ consists of all vertices in the graph.


  2. $|V_{i+1}| leq (|V_i|+1)/2$.


  3. $V_i supseteq C cap I$.


The players stop once $|V_m| leq 1$. At this point they can answer the question using $O(1)$ communication.



At round $i$, the players know $V_{i-1}$, and wish to construct $V_i$. They act as follows:




  • If $C cap V_{i-1}$ contains a vertex $v$ with fewer than $|V_{i-1}|/2$ neighbors in $V_{i-1}$, then Alice sends Bob one such vertex $v$, and both players set $V_i$ to be this set of neighbors, together with $v$ (this is valid since $C cap I subseteq C subseteq V_i$). Otherwise, she sends $bot$.


  • If Alice sent $bot$ and $I cap V_{i-1}$ contains a vertex $v$ with fewer than $|V_{i-1}|/2$ non-neighbors in $V_{i-1}$, then Bob sends Alice one such vertex $v$, and both players set $V_i$ to be this set of non-neighbors, together with $v$ (this is valid since $C cap I subseteq I subseteq V_i$). Otherwise, he sends Alice $bot$.


  • If both players sent $bot$, then $C cap I = emptyset$. Indeed, if $v in C cap I$, then $v$ has at least $|V_{i-1}|/2$ neighbors and at least $|V_{i-1}|/2$ non-neighbors inside $|V_{i-1}|$, whereas the number of potential neighbors and non-neighbors is just $|V_{i-1}|-1$. Therefore the players can abort and conclude that $C cap I = emptyset$.



Each round takes $O(log n)$ bits of communication, and there are $O(log n)$ rounds, for a total of $O(log^2 n)$ bits of communication.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 13 hours ago

























answered 14 hours ago









Yuval FilmusYuval Filmus

196k15184349




196k15184349












  • $begingroup$
    How does the number of vertices are resuced by factor of 2 - this leads to the $O(log(n))$ rounds?
    $endgroup$
    – Jay
    13 hours ago












  • $begingroup$
    I'm sorry, I can't explain it any better than what I wrote.
    $endgroup$
    – Yuval Filmus
    13 hours ago










  • $begingroup$
    Thanks a lot Yuval, I’ll try to figure it out.
    $endgroup$
    – Jay
    13 hours ago


















  • $begingroup$
    How does the number of vertices are resuced by factor of 2 - this leads to the $O(log(n))$ rounds?
    $endgroup$
    – Jay
    13 hours ago












  • $begingroup$
    I'm sorry, I can't explain it any better than what I wrote.
    $endgroup$
    – Yuval Filmus
    13 hours ago










  • $begingroup$
    Thanks a lot Yuval, I’ll try to figure it out.
    $endgroup$
    – Jay
    13 hours ago
















$begingroup$
How does the number of vertices are resuced by factor of 2 - this leads to the $O(log(n))$ rounds?
$endgroup$
– Jay
13 hours ago






$begingroup$
How does the number of vertices are resuced by factor of 2 - this leads to the $O(log(n))$ rounds?
$endgroup$
– Jay
13 hours ago














$begingroup$
I'm sorry, I can't explain it any better than what I wrote.
$endgroup$
– Yuval Filmus
13 hours ago




$begingroup$
I'm sorry, I can't explain it any better than what I wrote.
$endgroup$
– Yuval Filmus
13 hours ago












$begingroup$
Thanks a lot Yuval, I’ll try to figure it out.
$endgroup$
– Jay
13 hours ago




$begingroup$
Thanks a lot Yuval, I’ll try to figure it out.
$endgroup$
– Jay
13 hours ago











1












$begingroup$

The $O(log n)$ rounds comes from the fact that we are doing a binary search:



If the algorithm fails to terminate, then either Alice or Bob share a vertex v.



If Alice shares $v$, then $v$ has fewer than $|V_{i-1}|/2$ neighbors in $V_{i-1}$. $V_i$ is set to be this neighborhood (along with v). Observe that $|V_i|< |V_{i-1}|/2+1$ implying $|V_i|leq |V_{i-1}|/2$ (simply case check when $|V_{i-1}|$ is odd or even).



Similarly, if Bob shares $v$, then $v$ has fewer than $|V_{i-1}|/2$ non-neighbors in $V_{i-1}$. $V_i$ is set to be this non-neighborhood (along with v). As such, $|V_i|leq |V_{i-1}|/2$.



In both cases $|V_i|leq |V_{i-1}|/2$. As such, if the algorithm fails to terminate after $k$ iterations, then, inductively, $|V_k|leq |V_0|/2^k$. Finally, observe that the algorithm terminates if $1leq |V_k|leq |V_0|/2^k$ for any k, i.e., we will terminate if ever $V_k$ is a singleton or empty. Solving for $k$, we must terminate if $kgeq log |V_0|=log n$.






share|cite|improve this answer










New contributor




James Bailey is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$













  • $begingroup$
    If $|V_{i-1}|$ is odd then your inequality is off by 1/2.
    $endgroup$
    – Yuval Filmus
    17 mins ago
















1












$begingroup$

The $O(log n)$ rounds comes from the fact that we are doing a binary search:



If the algorithm fails to terminate, then either Alice or Bob share a vertex v.



If Alice shares $v$, then $v$ has fewer than $|V_{i-1}|/2$ neighbors in $V_{i-1}$. $V_i$ is set to be this neighborhood (along with v). Observe that $|V_i|< |V_{i-1}|/2+1$ implying $|V_i|leq |V_{i-1}|/2$ (simply case check when $|V_{i-1}|$ is odd or even).



Similarly, if Bob shares $v$, then $v$ has fewer than $|V_{i-1}|/2$ non-neighbors in $V_{i-1}$. $V_i$ is set to be this non-neighborhood (along with v). As such, $|V_i|leq |V_{i-1}|/2$.



In both cases $|V_i|leq |V_{i-1}|/2$. As such, if the algorithm fails to terminate after $k$ iterations, then, inductively, $|V_k|leq |V_0|/2^k$. Finally, observe that the algorithm terminates if $1leq |V_k|leq |V_0|/2^k$ for any k, i.e., we will terminate if ever $V_k$ is a singleton or empty. Solving for $k$, we must terminate if $kgeq log |V_0|=log n$.






share|cite|improve this answer










New contributor




James Bailey is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$













  • $begingroup$
    If $|V_{i-1}|$ is odd then your inequality is off by 1/2.
    $endgroup$
    – Yuval Filmus
    17 mins ago














1












1








1





$begingroup$

The $O(log n)$ rounds comes from the fact that we are doing a binary search:



If the algorithm fails to terminate, then either Alice or Bob share a vertex v.



If Alice shares $v$, then $v$ has fewer than $|V_{i-1}|/2$ neighbors in $V_{i-1}$. $V_i$ is set to be this neighborhood (along with v). Observe that $|V_i|< |V_{i-1}|/2+1$ implying $|V_i|leq |V_{i-1}|/2$ (simply case check when $|V_{i-1}|$ is odd or even).



Similarly, if Bob shares $v$, then $v$ has fewer than $|V_{i-1}|/2$ non-neighbors in $V_{i-1}$. $V_i$ is set to be this non-neighborhood (along with v). As such, $|V_i|leq |V_{i-1}|/2$.



In both cases $|V_i|leq |V_{i-1}|/2$. As such, if the algorithm fails to terminate after $k$ iterations, then, inductively, $|V_k|leq |V_0|/2^k$. Finally, observe that the algorithm terminates if $1leq |V_k|leq |V_0|/2^k$ for any k, i.e., we will terminate if ever $V_k$ is a singleton or empty. Solving for $k$, we must terminate if $kgeq log |V_0|=log n$.






share|cite|improve this answer










New contributor




James Bailey is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$



The $O(log n)$ rounds comes from the fact that we are doing a binary search:



If the algorithm fails to terminate, then either Alice or Bob share a vertex v.



If Alice shares $v$, then $v$ has fewer than $|V_{i-1}|/2$ neighbors in $V_{i-1}$. $V_i$ is set to be this neighborhood (along with v). Observe that $|V_i|< |V_{i-1}|/2+1$ implying $|V_i|leq |V_{i-1}|/2$ (simply case check when $|V_{i-1}|$ is odd or even).



Similarly, if Bob shares $v$, then $v$ has fewer than $|V_{i-1}|/2$ non-neighbors in $V_{i-1}$. $V_i$ is set to be this non-neighborhood (along with v). As such, $|V_i|leq |V_{i-1}|/2$.



In both cases $|V_i|leq |V_{i-1}|/2$. As such, if the algorithm fails to terminate after $k$ iterations, then, inductively, $|V_k|leq |V_0|/2^k$. Finally, observe that the algorithm terminates if $1leq |V_k|leq |V_0|/2^k$ for any k, i.e., we will terminate if ever $V_k$ is a singleton or empty. Solving for $k$, we must terminate if $kgeq log |V_0|=log n$.







share|cite|improve this answer










New contributor




James Bailey is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this answer



share|cite|improve this answer








edited 42 mins ago





















New contributor




James Bailey is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









answered 1 hour ago









James BaileyJames Bailey

112




112




New contributor




James Bailey is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





James Bailey is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






James Bailey is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • $begingroup$
    If $|V_{i-1}|$ is odd then your inequality is off by 1/2.
    $endgroup$
    – Yuval Filmus
    17 mins ago


















  • $begingroup$
    If $|V_{i-1}|$ is odd then your inequality is off by 1/2.
    $endgroup$
    – Yuval Filmus
    17 mins ago
















$begingroup$
If $|V_{i-1}|$ is odd then your inequality is off by 1/2.
$endgroup$
– Yuval Filmus
17 mins ago




$begingroup$
If $|V_{i-1}|$ is odd then your inequality is off by 1/2.
$endgroup$
– Yuval Filmus
17 mins ago


















draft saved

draft discarded




















































Thanks for contributing an answer to Computer Science Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106562%2fthe-clique-vs-independent-set-problem%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

What other Star Trek series did the main TNG cast show up in?

Berlina muro

Berlina aerponto