Finite etale covers of products of curves












5












$begingroup$


Probably this question can be phrased in a much greater generality, but I will just state it in the generality I require. I work over $mathbb{C}$.




Let $C_1, C_2 subset mathbb{P}^1$ be non-empty open subsets and $f: X to C_1 times C_2$ a non-trivial finite etale cover. Does there exist $iin {1,2}$ such that the composition $X to C_1 times C_2 to C_i$ has non-connected fibres?











share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    I do not think so, at least in general. Think of a double cover $bar{X}$ of $mathbb{P}^1 times mathbb{P}^1$ branched over a curve of type $L_1 + L_2 +M_1 +M_2$ (it gives you an étale double cover with $C_i=mathbb{P}^1$ minus two points). The general fibres of the composition $bar{X} to mathbb{P}^1 times mathbb{P}^1 to mathbb{P}^1$ are smooth double cover of $mathbb{P}^1$ branched at two points, hence they are again isomorphic to $mathbb{P}^1$, and so the fibres of your composition are isomorphic to $mathbb{P}^1$ minus the ramification, i.e. $mathbb{P}^1$ minus two points.
    $endgroup$
    – Francesco Polizzi
    yesterday












  • $begingroup$
    If you take a branch curve of type $L_1+L_2+L_3+L_4+M_1+M_2+M_3+M_4$, then the fibres of your compositions will be elliptic curves minus four points, and so on...
    $endgroup$
    – Francesco Polizzi
    yesterday












  • $begingroup$
    @Francesco Polizzi: Are you able to provide an answer with an explicit counter-example?
    $endgroup$
    – Daniel Loughran
    yesterday












  • $begingroup$
    @DanielLoughran: I will try
    $endgroup$
    – Francesco Polizzi
    yesterday
















5












$begingroup$


Probably this question can be phrased in a much greater generality, but I will just state it in the generality I require. I work over $mathbb{C}$.




Let $C_1, C_2 subset mathbb{P}^1$ be non-empty open subsets and $f: X to C_1 times C_2$ a non-trivial finite etale cover. Does there exist $iin {1,2}$ such that the composition $X to C_1 times C_2 to C_i$ has non-connected fibres?











share|cite|improve this question









$endgroup$








  • 2




    $begingroup$
    I do not think so, at least in general. Think of a double cover $bar{X}$ of $mathbb{P}^1 times mathbb{P}^1$ branched over a curve of type $L_1 + L_2 +M_1 +M_2$ (it gives you an étale double cover with $C_i=mathbb{P}^1$ minus two points). The general fibres of the composition $bar{X} to mathbb{P}^1 times mathbb{P}^1 to mathbb{P}^1$ are smooth double cover of $mathbb{P}^1$ branched at two points, hence they are again isomorphic to $mathbb{P}^1$, and so the fibres of your composition are isomorphic to $mathbb{P}^1$ minus the ramification, i.e. $mathbb{P}^1$ minus two points.
    $endgroup$
    – Francesco Polizzi
    yesterday












  • $begingroup$
    If you take a branch curve of type $L_1+L_2+L_3+L_4+M_1+M_2+M_3+M_4$, then the fibres of your compositions will be elliptic curves minus four points, and so on...
    $endgroup$
    – Francesco Polizzi
    yesterday












  • $begingroup$
    @Francesco Polizzi: Are you able to provide an answer with an explicit counter-example?
    $endgroup$
    – Daniel Loughran
    yesterday












  • $begingroup$
    @DanielLoughran: I will try
    $endgroup$
    – Francesco Polizzi
    yesterday














5












5








5


1



$begingroup$


Probably this question can be phrased in a much greater generality, but I will just state it in the generality I require. I work over $mathbb{C}$.




Let $C_1, C_2 subset mathbb{P}^1$ be non-empty open subsets and $f: X to C_1 times C_2$ a non-trivial finite etale cover. Does there exist $iin {1,2}$ such that the composition $X to C_1 times C_2 to C_i$ has non-connected fibres?











share|cite|improve this question









$endgroup$




Probably this question can be phrased in a much greater generality, but I will just state it in the generality I require. I work over $mathbb{C}$.




Let $C_1, C_2 subset mathbb{P}^1$ be non-empty open subsets and $f: X to C_1 times C_2$ a non-trivial finite etale cover. Does there exist $iin {1,2}$ such that the composition $X to C_1 times C_2 to C_i$ has non-connected fibres?








ag.algebraic-geometry at.algebraic-topology fundamental-group covering-spaces etale-covers






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked yesterday









Daniel LoughranDaniel Loughran

11.2k22672




11.2k22672








  • 2




    $begingroup$
    I do not think so, at least in general. Think of a double cover $bar{X}$ of $mathbb{P}^1 times mathbb{P}^1$ branched over a curve of type $L_1 + L_2 +M_1 +M_2$ (it gives you an étale double cover with $C_i=mathbb{P}^1$ minus two points). The general fibres of the composition $bar{X} to mathbb{P}^1 times mathbb{P}^1 to mathbb{P}^1$ are smooth double cover of $mathbb{P}^1$ branched at two points, hence they are again isomorphic to $mathbb{P}^1$, and so the fibres of your composition are isomorphic to $mathbb{P}^1$ minus the ramification, i.e. $mathbb{P}^1$ minus two points.
    $endgroup$
    – Francesco Polizzi
    yesterday












  • $begingroup$
    If you take a branch curve of type $L_1+L_2+L_3+L_4+M_1+M_2+M_3+M_4$, then the fibres of your compositions will be elliptic curves minus four points, and so on...
    $endgroup$
    – Francesco Polizzi
    yesterday












  • $begingroup$
    @Francesco Polizzi: Are you able to provide an answer with an explicit counter-example?
    $endgroup$
    – Daniel Loughran
    yesterday












  • $begingroup$
    @DanielLoughran: I will try
    $endgroup$
    – Francesco Polizzi
    yesterday














  • 2




    $begingroup$
    I do not think so, at least in general. Think of a double cover $bar{X}$ of $mathbb{P}^1 times mathbb{P}^1$ branched over a curve of type $L_1 + L_2 +M_1 +M_2$ (it gives you an étale double cover with $C_i=mathbb{P}^1$ minus two points). The general fibres of the composition $bar{X} to mathbb{P}^1 times mathbb{P}^1 to mathbb{P}^1$ are smooth double cover of $mathbb{P}^1$ branched at two points, hence they are again isomorphic to $mathbb{P}^1$, and so the fibres of your composition are isomorphic to $mathbb{P}^1$ minus the ramification, i.e. $mathbb{P}^1$ minus two points.
    $endgroup$
    – Francesco Polizzi
    yesterday












  • $begingroup$
    If you take a branch curve of type $L_1+L_2+L_3+L_4+M_1+M_2+M_3+M_4$, then the fibres of your compositions will be elliptic curves minus four points, and so on...
    $endgroup$
    – Francesco Polizzi
    yesterday












  • $begingroup$
    @Francesco Polizzi: Are you able to provide an answer with an explicit counter-example?
    $endgroup$
    – Daniel Loughran
    yesterday












  • $begingroup$
    @DanielLoughran: I will try
    $endgroup$
    – Francesco Polizzi
    yesterday








2




2




$begingroup$
I do not think so, at least in general. Think of a double cover $bar{X}$ of $mathbb{P}^1 times mathbb{P}^1$ branched over a curve of type $L_1 + L_2 +M_1 +M_2$ (it gives you an étale double cover with $C_i=mathbb{P}^1$ minus two points). The general fibres of the composition $bar{X} to mathbb{P}^1 times mathbb{P}^1 to mathbb{P}^1$ are smooth double cover of $mathbb{P}^1$ branched at two points, hence they are again isomorphic to $mathbb{P}^1$, and so the fibres of your composition are isomorphic to $mathbb{P}^1$ minus the ramification, i.e. $mathbb{P}^1$ minus two points.
$endgroup$
– Francesco Polizzi
yesterday






$begingroup$
I do not think so, at least in general. Think of a double cover $bar{X}$ of $mathbb{P}^1 times mathbb{P}^1$ branched over a curve of type $L_1 + L_2 +M_1 +M_2$ (it gives you an étale double cover with $C_i=mathbb{P}^1$ minus two points). The general fibres of the composition $bar{X} to mathbb{P}^1 times mathbb{P}^1 to mathbb{P}^1$ are smooth double cover of $mathbb{P}^1$ branched at two points, hence they are again isomorphic to $mathbb{P}^1$, and so the fibres of your composition are isomorphic to $mathbb{P}^1$ minus the ramification, i.e. $mathbb{P}^1$ minus two points.
$endgroup$
– Francesco Polizzi
yesterday














$begingroup$
If you take a branch curve of type $L_1+L_2+L_3+L_4+M_1+M_2+M_3+M_4$, then the fibres of your compositions will be elliptic curves minus four points, and so on...
$endgroup$
– Francesco Polizzi
yesterday






$begingroup$
If you take a branch curve of type $L_1+L_2+L_3+L_4+M_1+M_2+M_3+M_4$, then the fibres of your compositions will be elliptic curves minus four points, and so on...
$endgroup$
– Francesco Polizzi
yesterday














$begingroup$
@Francesco Polizzi: Are you able to provide an answer with an explicit counter-example?
$endgroup$
– Daniel Loughran
yesterday






$begingroup$
@Francesco Polizzi: Are you able to provide an answer with an explicit counter-example?
$endgroup$
– Daniel Loughran
yesterday














$begingroup$
@DanielLoughran: I will try
$endgroup$
– Francesco Polizzi
yesterday




$begingroup$
@DanielLoughran: I will try
$endgroup$
– Francesco Polizzi
yesterday










2 Answers
2






active

oldest

votes


















6












$begingroup$

The answer is no, at least in general, as shown by the following counterexample.



Take a double cover $bar{f} colon bar{X} to mathbb{P}^1 times mathbb{P}^1$, branched over a reducible
curve of the form $B=L_1 + L_2 + M_1 + M_2$ (here $|L|$ and $|M|$ are the two pencil of lines on the quadric).



Such a cover exists because $B$ is $2$-divisible in $mathrm{Pic}(mathbb{P}^1 times mathbb{P}^1)$, and corresponds to an étale cover $f colon X to C_1 times C_2$, where each $C_i$ is $mathbb{P}^1$ - {two points}.



If these points are (say) $0$ and $1$ in both factors, then the equation for $X subset mathbb{C} times (mathbb{C}-{0, , 1})^2$ is
$$z^2 = xy(x-1)(y-1), quad f(z, (x, ,y)) = (x,, y).$$



It is clear that the general line in $|L|$ and $|M|$ intersects the branch locus $B$ transversally at two points, hence both compositions $$bar{X} to mathbb{P}^1 times mathbb{P}^1 to mathbb{P}^1$$ have connected fibres, the general one being isomorphic to $mathbb{P}^1$ (double cover of $mathbb{P}^1$ branched at two points).



Then both compositions $$X to C_1 times C_2 to C_i$$ have connected fibres, the general one being isomorphic to the $mathbb{P}^1$ above minus the ramification, i.e. $mathbb{P}^1$ minus two points, that is clearly connected.



In the same vein, choosing as $B subset mathbb{P}^1 times mathbb{P}^1$ a divisor of type $$B = sum_{i=1}^{2g+2} L_i + sum_{i=1}^{2g+2} M_i,$$
both compositions $$bar{X} to mathbb{P}^1 times mathbb{P}^1 to mathbb{P}^1$$ have connected fibres, the general one being isomorphic to a hyperelliptic curve $Sigma_g$ of genus $g$, and so both compositions $$X to C_1 times C_2 to C_i$$ (here each $C_i$ is $mathbb{P}^1$ minus $2g+2$ points) have connected fibres, the general one being isomorphic to $Sigma_g$ minus $2g+2$ distinct points.






share|cite|improve this answer











$endgroup$













  • $begingroup$
    Thanks for the answer. Out of interest, I think that the explicit example you constructed is a quartic del Pezzo surface, and the two projections to $mathbb{P}^1$ are conic bundles on the surface.
    $endgroup$
    – Daniel Loughran
    yesterday












  • $begingroup$
    @DanielLoughran: You are welcome. Note that $bar{X}$ in the first example has four nodal singularities, corresponding to the four nodes of the branch curve $B$.
    $endgroup$
    – Francesco Polizzi
    yesterday



















7












$begingroup$

The question already has a beautiful answer, but here's a different point of view which you may find helpful.



Let $F_i = pi_1(C_i, x_i)$, which is a free group on $#(mathbf{P}^1setminus C_i) - 1$ generators (the etale fundamental group will be the profinite completion of this). Then $F = pi_1(C_1times C_2, x_1times x_2) = F_1times F_2$.



A finite etale cover of $C_i$ or $C_1times C_2$ corresponds to a finite set (its fiber at the basepoint $x_i$ or $x_1times x_2$) with an action of $F_i$ or $F$. The cover is connected if and only if the action on that set is transitive.



Let $sigma_i colon C_ito C_1times C_2$ be the section $sigma_1(x) = (x, x_2)$, $sigma_2(x) = (x_1, x)$. Then for a finite etale cover $Xto C_1times C_2$, the composition $Xto C_1times C_2to C_i$ has connected fibres if and only if the pull-back of $X$ along $sigma_{2-i}$ is connected.



So now the question is equivalent to: suppose that $S$ is a finite set with more than one element with an action of $F=F_1times F_2$. Is it possible that $F_1$ and $F_2$ both act transitively on $S$? It is very easy to construct such examples.



The easiest one could be $S$ with two elements, with every generator of each $F_i$ acting by a nontrivial involution. If there are only two punctures on each curve, this coincides with Francesco Polizzi's construction, and we see that his example is in some sense minimal.






share|cite|improve this answer











$endgroup$














    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "504"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327650%2ffinite-etale-covers-of-products-of-curves%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    6












    $begingroup$

    The answer is no, at least in general, as shown by the following counterexample.



    Take a double cover $bar{f} colon bar{X} to mathbb{P}^1 times mathbb{P}^1$, branched over a reducible
    curve of the form $B=L_1 + L_2 + M_1 + M_2$ (here $|L|$ and $|M|$ are the two pencil of lines on the quadric).



    Such a cover exists because $B$ is $2$-divisible in $mathrm{Pic}(mathbb{P}^1 times mathbb{P}^1)$, and corresponds to an étale cover $f colon X to C_1 times C_2$, where each $C_i$ is $mathbb{P}^1$ - {two points}.



    If these points are (say) $0$ and $1$ in both factors, then the equation for $X subset mathbb{C} times (mathbb{C}-{0, , 1})^2$ is
    $$z^2 = xy(x-1)(y-1), quad f(z, (x, ,y)) = (x,, y).$$



    It is clear that the general line in $|L|$ and $|M|$ intersects the branch locus $B$ transversally at two points, hence both compositions $$bar{X} to mathbb{P}^1 times mathbb{P}^1 to mathbb{P}^1$$ have connected fibres, the general one being isomorphic to $mathbb{P}^1$ (double cover of $mathbb{P}^1$ branched at two points).



    Then both compositions $$X to C_1 times C_2 to C_i$$ have connected fibres, the general one being isomorphic to the $mathbb{P}^1$ above minus the ramification, i.e. $mathbb{P}^1$ minus two points, that is clearly connected.



    In the same vein, choosing as $B subset mathbb{P}^1 times mathbb{P}^1$ a divisor of type $$B = sum_{i=1}^{2g+2} L_i + sum_{i=1}^{2g+2} M_i,$$
    both compositions $$bar{X} to mathbb{P}^1 times mathbb{P}^1 to mathbb{P}^1$$ have connected fibres, the general one being isomorphic to a hyperelliptic curve $Sigma_g$ of genus $g$, and so both compositions $$X to C_1 times C_2 to C_i$$ (here each $C_i$ is $mathbb{P}^1$ minus $2g+2$ points) have connected fibres, the general one being isomorphic to $Sigma_g$ minus $2g+2$ distinct points.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Thanks for the answer. Out of interest, I think that the explicit example you constructed is a quartic del Pezzo surface, and the two projections to $mathbb{P}^1$ are conic bundles on the surface.
      $endgroup$
      – Daniel Loughran
      yesterday












    • $begingroup$
      @DanielLoughran: You are welcome. Note that $bar{X}$ in the first example has four nodal singularities, corresponding to the four nodes of the branch curve $B$.
      $endgroup$
      – Francesco Polizzi
      yesterday
















    6












    $begingroup$

    The answer is no, at least in general, as shown by the following counterexample.



    Take a double cover $bar{f} colon bar{X} to mathbb{P}^1 times mathbb{P}^1$, branched over a reducible
    curve of the form $B=L_1 + L_2 + M_1 + M_2$ (here $|L|$ and $|M|$ are the two pencil of lines on the quadric).



    Such a cover exists because $B$ is $2$-divisible in $mathrm{Pic}(mathbb{P}^1 times mathbb{P}^1)$, and corresponds to an étale cover $f colon X to C_1 times C_2$, where each $C_i$ is $mathbb{P}^1$ - {two points}.



    If these points are (say) $0$ and $1$ in both factors, then the equation for $X subset mathbb{C} times (mathbb{C}-{0, , 1})^2$ is
    $$z^2 = xy(x-1)(y-1), quad f(z, (x, ,y)) = (x,, y).$$



    It is clear that the general line in $|L|$ and $|M|$ intersects the branch locus $B$ transversally at two points, hence both compositions $$bar{X} to mathbb{P}^1 times mathbb{P}^1 to mathbb{P}^1$$ have connected fibres, the general one being isomorphic to $mathbb{P}^1$ (double cover of $mathbb{P}^1$ branched at two points).



    Then both compositions $$X to C_1 times C_2 to C_i$$ have connected fibres, the general one being isomorphic to the $mathbb{P}^1$ above minus the ramification, i.e. $mathbb{P}^1$ minus two points, that is clearly connected.



    In the same vein, choosing as $B subset mathbb{P}^1 times mathbb{P}^1$ a divisor of type $$B = sum_{i=1}^{2g+2} L_i + sum_{i=1}^{2g+2} M_i,$$
    both compositions $$bar{X} to mathbb{P}^1 times mathbb{P}^1 to mathbb{P}^1$$ have connected fibres, the general one being isomorphic to a hyperelliptic curve $Sigma_g$ of genus $g$, and so both compositions $$X to C_1 times C_2 to C_i$$ (here each $C_i$ is $mathbb{P}^1$ minus $2g+2$ points) have connected fibres, the general one being isomorphic to $Sigma_g$ minus $2g+2$ distinct points.






    share|cite|improve this answer











    $endgroup$













    • $begingroup$
      Thanks for the answer. Out of interest, I think that the explicit example you constructed is a quartic del Pezzo surface, and the two projections to $mathbb{P}^1$ are conic bundles on the surface.
      $endgroup$
      – Daniel Loughran
      yesterday












    • $begingroup$
      @DanielLoughran: You are welcome. Note that $bar{X}$ in the first example has four nodal singularities, corresponding to the four nodes of the branch curve $B$.
      $endgroup$
      – Francesco Polizzi
      yesterday














    6












    6








    6





    $begingroup$

    The answer is no, at least in general, as shown by the following counterexample.



    Take a double cover $bar{f} colon bar{X} to mathbb{P}^1 times mathbb{P}^1$, branched over a reducible
    curve of the form $B=L_1 + L_2 + M_1 + M_2$ (here $|L|$ and $|M|$ are the two pencil of lines on the quadric).



    Such a cover exists because $B$ is $2$-divisible in $mathrm{Pic}(mathbb{P}^1 times mathbb{P}^1)$, and corresponds to an étale cover $f colon X to C_1 times C_2$, where each $C_i$ is $mathbb{P}^1$ - {two points}.



    If these points are (say) $0$ and $1$ in both factors, then the equation for $X subset mathbb{C} times (mathbb{C}-{0, , 1})^2$ is
    $$z^2 = xy(x-1)(y-1), quad f(z, (x, ,y)) = (x,, y).$$



    It is clear that the general line in $|L|$ and $|M|$ intersects the branch locus $B$ transversally at two points, hence both compositions $$bar{X} to mathbb{P}^1 times mathbb{P}^1 to mathbb{P}^1$$ have connected fibres, the general one being isomorphic to $mathbb{P}^1$ (double cover of $mathbb{P}^1$ branched at two points).



    Then both compositions $$X to C_1 times C_2 to C_i$$ have connected fibres, the general one being isomorphic to the $mathbb{P}^1$ above minus the ramification, i.e. $mathbb{P}^1$ minus two points, that is clearly connected.



    In the same vein, choosing as $B subset mathbb{P}^1 times mathbb{P}^1$ a divisor of type $$B = sum_{i=1}^{2g+2} L_i + sum_{i=1}^{2g+2} M_i,$$
    both compositions $$bar{X} to mathbb{P}^1 times mathbb{P}^1 to mathbb{P}^1$$ have connected fibres, the general one being isomorphic to a hyperelliptic curve $Sigma_g$ of genus $g$, and so both compositions $$X to C_1 times C_2 to C_i$$ (here each $C_i$ is $mathbb{P}^1$ minus $2g+2$ points) have connected fibres, the general one being isomorphic to $Sigma_g$ minus $2g+2$ distinct points.






    share|cite|improve this answer











    $endgroup$



    The answer is no, at least in general, as shown by the following counterexample.



    Take a double cover $bar{f} colon bar{X} to mathbb{P}^1 times mathbb{P}^1$, branched over a reducible
    curve of the form $B=L_1 + L_2 + M_1 + M_2$ (here $|L|$ and $|M|$ are the two pencil of lines on the quadric).



    Such a cover exists because $B$ is $2$-divisible in $mathrm{Pic}(mathbb{P}^1 times mathbb{P}^1)$, and corresponds to an étale cover $f colon X to C_1 times C_2$, where each $C_i$ is $mathbb{P}^1$ - {two points}.



    If these points are (say) $0$ and $1$ in both factors, then the equation for $X subset mathbb{C} times (mathbb{C}-{0, , 1})^2$ is
    $$z^2 = xy(x-1)(y-1), quad f(z, (x, ,y)) = (x,, y).$$



    It is clear that the general line in $|L|$ and $|M|$ intersects the branch locus $B$ transversally at two points, hence both compositions $$bar{X} to mathbb{P}^1 times mathbb{P}^1 to mathbb{P}^1$$ have connected fibres, the general one being isomorphic to $mathbb{P}^1$ (double cover of $mathbb{P}^1$ branched at two points).



    Then both compositions $$X to C_1 times C_2 to C_i$$ have connected fibres, the general one being isomorphic to the $mathbb{P}^1$ above minus the ramification, i.e. $mathbb{P}^1$ minus two points, that is clearly connected.



    In the same vein, choosing as $B subset mathbb{P}^1 times mathbb{P}^1$ a divisor of type $$B = sum_{i=1}^{2g+2} L_i + sum_{i=1}^{2g+2} M_i,$$
    both compositions $$bar{X} to mathbb{P}^1 times mathbb{P}^1 to mathbb{P}^1$$ have connected fibres, the general one being isomorphic to a hyperelliptic curve $Sigma_g$ of genus $g$, and so both compositions $$X to C_1 times C_2 to C_i$$ (here each $C_i$ is $mathbb{P}^1$ minus $2g+2$ points) have connected fibres, the general one being isomorphic to $Sigma_g$ minus $2g+2$ distinct points.







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited yesterday

























    answered yesterday









    Francesco PolizziFrancesco Polizzi

    48.7k3131213




    48.7k3131213












    • $begingroup$
      Thanks for the answer. Out of interest, I think that the explicit example you constructed is a quartic del Pezzo surface, and the two projections to $mathbb{P}^1$ are conic bundles on the surface.
      $endgroup$
      – Daniel Loughran
      yesterday












    • $begingroup$
      @DanielLoughran: You are welcome. Note that $bar{X}$ in the first example has four nodal singularities, corresponding to the four nodes of the branch curve $B$.
      $endgroup$
      – Francesco Polizzi
      yesterday


















    • $begingroup$
      Thanks for the answer. Out of interest, I think that the explicit example you constructed is a quartic del Pezzo surface, and the two projections to $mathbb{P}^1$ are conic bundles on the surface.
      $endgroup$
      – Daniel Loughran
      yesterday












    • $begingroup$
      @DanielLoughran: You are welcome. Note that $bar{X}$ in the first example has four nodal singularities, corresponding to the four nodes of the branch curve $B$.
      $endgroup$
      – Francesco Polizzi
      yesterday
















    $begingroup$
    Thanks for the answer. Out of interest, I think that the explicit example you constructed is a quartic del Pezzo surface, and the two projections to $mathbb{P}^1$ are conic bundles on the surface.
    $endgroup$
    – Daniel Loughran
    yesterday






    $begingroup$
    Thanks for the answer. Out of interest, I think that the explicit example you constructed is a quartic del Pezzo surface, and the two projections to $mathbb{P}^1$ are conic bundles on the surface.
    $endgroup$
    – Daniel Loughran
    yesterday














    $begingroup$
    @DanielLoughran: You are welcome. Note that $bar{X}$ in the first example has four nodal singularities, corresponding to the four nodes of the branch curve $B$.
    $endgroup$
    – Francesco Polizzi
    yesterday




    $begingroup$
    @DanielLoughran: You are welcome. Note that $bar{X}$ in the first example has four nodal singularities, corresponding to the four nodes of the branch curve $B$.
    $endgroup$
    – Francesco Polizzi
    yesterday











    7












    $begingroup$

    The question already has a beautiful answer, but here's a different point of view which you may find helpful.



    Let $F_i = pi_1(C_i, x_i)$, which is a free group on $#(mathbf{P}^1setminus C_i) - 1$ generators (the etale fundamental group will be the profinite completion of this). Then $F = pi_1(C_1times C_2, x_1times x_2) = F_1times F_2$.



    A finite etale cover of $C_i$ or $C_1times C_2$ corresponds to a finite set (its fiber at the basepoint $x_i$ or $x_1times x_2$) with an action of $F_i$ or $F$. The cover is connected if and only if the action on that set is transitive.



    Let $sigma_i colon C_ito C_1times C_2$ be the section $sigma_1(x) = (x, x_2)$, $sigma_2(x) = (x_1, x)$. Then for a finite etale cover $Xto C_1times C_2$, the composition $Xto C_1times C_2to C_i$ has connected fibres if and only if the pull-back of $X$ along $sigma_{2-i}$ is connected.



    So now the question is equivalent to: suppose that $S$ is a finite set with more than one element with an action of $F=F_1times F_2$. Is it possible that $F_1$ and $F_2$ both act transitively on $S$? It is very easy to construct such examples.



    The easiest one could be $S$ with two elements, with every generator of each $F_i$ acting by a nontrivial involution. If there are only two punctures on each curve, this coincides with Francesco Polizzi's construction, and we see that his example is in some sense minimal.






    share|cite|improve this answer











    $endgroup$


















      7












      $begingroup$

      The question already has a beautiful answer, but here's a different point of view which you may find helpful.



      Let $F_i = pi_1(C_i, x_i)$, which is a free group on $#(mathbf{P}^1setminus C_i) - 1$ generators (the etale fundamental group will be the profinite completion of this). Then $F = pi_1(C_1times C_2, x_1times x_2) = F_1times F_2$.



      A finite etale cover of $C_i$ or $C_1times C_2$ corresponds to a finite set (its fiber at the basepoint $x_i$ or $x_1times x_2$) with an action of $F_i$ or $F$. The cover is connected if and only if the action on that set is transitive.



      Let $sigma_i colon C_ito C_1times C_2$ be the section $sigma_1(x) = (x, x_2)$, $sigma_2(x) = (x_1, x)$. Then for a finite etale cover $Xto C_1times C_2$, the composition $Xto C_1times C_2to C_i$ has connected fibres if and only if the pull-back of $X$ along $sigma_{2-i}$ is connected.



      So now the question is equivalent to: suppose that $S$ is a finite set with more than one element with an action of $F=F_1times F_2$. Is it possible that $F_1$ and $F_2$ both act transitively on $S$? It is very easy to construct such examples.



      The easiest one could be $S$ with two elements, with every generator of each $F_i$ acting by a nontrivial involution. If there are only two punctures on each curve, this coincides with Francesco Polizzi's construction, and we see that his example is in some sense minimal.






      share|cite|improve this answer











      $endgroup$
















        7












        7








        7





        $begingroup$

        The question already has a beautiful answer, but here's a different point of view which you may find helpful.



        Let $F_i = pi_1(C_i, x_i)$, which is a free group on $#(mathbf{P}^1setminus C_i) - 1$ generators (the etale fundamental group will be the profinite completion of this). Then $F = pi_1(C_1times C_2, x_1times x_2) = F_1times F_2$.



        A finite etale cover of $C_i$ or $C_1times C_2$ corresponds to a finite set (its fiber at the basepoint $x_i$ or $x_1times x_2$) with an action of $F_i$ or $F$. The cover is connected if and only if the action on that set is transitive.



        Let $sigma_i colon C_ito C_1times C_2$ be the section $sigma_1(x) = (x, x_2)$, $sigma_2(x) = (x_1, x)$. Then for a finite etale cover $Xto C_1times C_2$, the composition $Xto C_1times C_2to C_i$ has connected fibres if and only if the pull-back of $X$ along $sigma_{2-i}$ is connected.



        So now the question is equivalent to: suppose that $S$ is a finite set with more than one element with an action of $F=F_1times F_2$. Is it possible that $F_1$ and $F_2$ both act transitively on $S$? It is very easy to construct such examples.



        The easiest one could be $S$ with two elements, with every generator of each $F_i$ acting by a nontrivial involution. If there are only two punctures on each curve, this coincides with Francesco Polizzi's construction, and we see that his example is in some sense minimal.






        share|cite|improve this answer











        $endgroup$



        The question already has a beautiful answer, but here's a different point of view which you may find helpful.



        Let $F_i = pi_1(C_i, x_i)$, which is a free group on $#(mathbf{P}^1setminus C_i) - 1$ generators (the etale fundamental group will be the profinite completion of this). Then $F = pi_1(C_1times C_2, x_1times x_2) = F_1times F_2$.



        A finite etale cover of $C_i$ or $C_1times C_2$ corresponds to a finite set (its fiber at the basepoint $x_i$ or $x_1times x_2$) with an action of $F_i$ or $F$. The cover is connected if and only if the action on that set is transitive.



        Let $sigma_i colon C_ito C_1times C_2$ be the section $sigma_1(x) = (x, x_2)$, $sigma_2(x) = (x_1, x)$. Then for a finite etale cover $Xto C_1times C_2$, the composition $Xto C_1times C_2to C_i$ has connected fibres if and only if the pull-back of $X$ along $sigma_{2-i}$ is connected.



        So now the question is equivalent to: suppose that $S$ is a finite set with more than one element with an action of $F=F_1times F_2$. Is it possible that $F_1$ and $F_2$ both act transitively on $S$? It is very easy to construct such examples.



        The easiest one could be $S$ with two elements, with every generator of each $F_i$ acting by a nontrivial involution. If there are only two punctures on each curve, this coincides with Francesco Polizzi's construction, and we see that his example is in some sense minimal.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited yesterday

























        answered yesterday









        Piotr AchingerPiotr Achinger

        8,62212854




        8,62212854






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to MathOverflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f327650%2ffinite-etale-covers-of-products-of-curves%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            What other Star Trek series did the main TNG cast show up in?

            Berlina muro

            Berlina aerponto